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Notations

The following table describes the different mathematical notations used in this manuscript.

Mathematic notations Description of the mathematics notations

C Complex values set
R Real values set
A∗ Transpose conjugate of A ∈ C
AT Transpose of A ∈ R
λ Eigenvalues
σ Singular values
σH Hankel singular values
< Real part
= Imaginary part

Table 1: Notations for the mathematical tools



The following table describes the different acronyms used in this manuscript.

Acronym Description of the acronym

A/C Aircraft
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems

ADASRP Advanced Driver Assistance Systems Research Platform
ANN Artificial Neural Network
B&B Branch and Bound
BS Braking System
CAN Controller Area Network
CC Cruise Control
CG Centre of Gravity
DC Direct Current

DGPS Differential Global Positioning System
FC Follow the Carrot
FSM Finite State Machine
GA Genetic Algorithm
GPS Global Positioning System

HIFOO H∞ Fixed-Order Optimization
I/O Input/Output
ITS Intelligent Transportation Systems
LoLG Lateral or Longitudinal guidance
LaLG Lateral and Longitudinal guidance
LAD Look Ahead Distance
LFT Linear Fractional Transformation
LTI Linear Time Invariant
LPV Linear Parameter Variant
LTV Linear Time Variant
MIMO Multi-Input/Multi-Output
MLD Mixed Logical Dynamical
MOR Model Order Reduction
MPC Model Predictive Control
NLG Nose Landing Gear
MLG Main Landing Gear
NMPC Non-linear Model Predictive Control
NN Neural Network

NNMPC Neural Network Model Predictive Control
ODE Ordinary Differential Equations
PID Proportional Integral Derivative
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Acronym Description of the acronym

PWA Piecewise Affine
QP Quadratic Programming
RMS Root Mean Square
SDP Semi Definite Programming
SISO Single Input single Output
SPR Strictly Positive Real
W/R Wheel/Road

Table 2: Notations for the acronyms
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The following table describes the different parameters used in this manuscript.

Notation Definition Unit

F force [N ]
M moment [N.m]
θt turning tube angle [rad]
θw wheel angle around the vertical axis [rad]
θ̇w wheel speed around the vertical axis [rad.s−1]
θm motor angle [rad]
J1 turning tube inertia [kg.m2]
J2 sliding tube inertia [kg.m2]
Jtotal sum of J1 and J2 [kg.m2]
Jm motor inertia [kg.m2]
Tr resistive torque at the W/R interface [N.m]
Tleg torque at the leg level [N.m]
Tem electromechanical torque [N.m]
Nc first reduction ratio []
Nw second reduction ratio []
K actuator stiffness [N.rad−1]
e caster length [m]
Vx longitudinal speed [m.s−1]
Fz vertical load [N ]
βNW nose wheel tyre slip angle [rad]
Fy lateral force [N ]
Mz self-aligning torque [N.m]
k stiffness [N.rad−1]
c damping coefficient [N.rad−1.s]
Vy lateral speed [m.s−1]
r yaw rate [rad.s−1]
ψ yaw angle [rad]
LNW distance between the NLG and the CG [m]
LMW distance between the MLG and the CG [m]
γL longitudinal acceleration [m.s−2]
γT lateral accleration [m.s−2]

Table 3: Different used parameters
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Introduction

Context of the work

Despite a slight decrease in air traffic during the last 10 months, mainly due to the global eco-
nomic crisis, the number of passengers aboard aircraft is still enormous. Indeed, the aircraft has
carried more than 2.4 billion of passengers in 2008, according to the International Air Transport
Association (IATA). Moreover, according to the European Organisation for the Safety of Air
Navigation (Eurocontrol), nearly 280,000 aircraft have departed from the Charles-De-Gaulle air-
port in Paris, during the year 2008. This figure corresponds to approximately one take off every
two minutes. Also according to the IATA, a forecast of 2.75 billion of air passengers is planned
for 2011, which corresponds to a rise of 29% compared with 2006. Due to this rapid increase in
global air traffic, several issues must be raised 1 :

• reducing the environmental impact of aviation:
Air transport has an impact on the environment, insofar as aviation produces around
2% of the world’s manmade emissions of carbon dioxide (CO2), according to the United
Nations Intergovernmental Panel on Climate Change (IPCC). Moreover, 80 % of aviation’s
greenhouse gas emissions are related to passenger flights exceeding 1,500 km, for which
there is no transportation alternative, according to Pulles J.W. et al2. To address these
environmental problems, funding are made available for different research and development
projects (Clean Sky3 or SESAR4 (Single European Sky Air Traffic Management Research)).
Likewise, airliners contribute to limite the climate changes. For instance, Air France opts
for lighter cabin equipment, rolley weight diminishes of 6kg, glass tray weight diminishes
of 500g and drawer weight diminishes of 300g; allowing a CO2 reduction emission of 19400
tons per year.

• increasing the satisfaction of the aircraft passengers:
Outside the cost of aircraft tickets which is very important for the passengers, the satisfac-
tion of these latter is likewise due to the minimization of the travel time. Ground traffic
management, that means taxi time and ground waiting time must be improved. Moreover,
important efforts are made to minimize flight delays. For example, low visibility conditions
prevent the aircraft from moving freely on the runway and engender important delays. For

1These three items do not constitue an exhaustive descritpion of the problems encountered in the field of
aeronautics. Moreover, no link can be made between the order of different items and the importance of them.

2AERO modelling system, Pulles J.W. et al., 2004
3www.cleansky.eu
4www.sesarju.eu



instance, according to Eurocontrol, in 2008, at the London Heathrow airport, 28 % of the
delays were caused by bad weather.

• minimising the cost for the airliners:
Different solutions are contemplated to minimize the cost for the airliners and for instance
the fuel costs. In this way, energy efficiency of air operations has improved by 20% for
10 years, according to the IATA. Moreover, benefits can be done by limiting the turn-
around time, that means the time needed to complete turn-around operation at the airport
(refuelling, baggage handling, boarding and deplanning of passengers, etc ). In this area,
Airbus5 works hardly on galley configuration (that means the kitchenette arrangement)
or the Embraer 170/190 family jets6 includes two main passenger entrances, resulting on
a minimization of aircraft turn-around time. This latter could be improved as well, by
favorising easier maintenance operations of the different onboard systems.

Faced with these problems, the Distributed and Redundant Electro-mechanical Nose Gear
Steering System (DRESS) European project seeks to contribute to improved aircraft.

The DRESS European project and the “more electric” aircraft

The DRESS FP6 STREP European project, which brings together a total of 13 European actors
of the aeronautic industry (Messier-Bugatti, Messier-Dowty, Airbus UK, SAAB, etc) and of
academic research area (University de Haute-Alsace, INSA Toulouse, Budapest University of
Technology and Economics etc), provides solutions for the development of a more electric aircraft.

Indeed, since the beginning of the aviation history, electric power is increasingly present
in systems. Gradually, the different stages that lead to the “more electric” aircraft have been
passed through. In the fifties, due to the increase of the electric power demand, the aircraft
available voltage has evolved from 28V DC to 115V AC. In the eighties, with the advent of the
Airbus A320, the aircraft electric flight control system appeared. The emergence of faster digital
processors helps to develop controlled systems which are designed to directly drive the movement
of the aircraft according to the different flight conditions. The action of the pilot on the tiller7

does not act directly on the rudders8 and ailerons9. Recently, on the Airbus A380, more and
more electro hydrostatic actuators replace electro-hydraulic servo control systems.

In the following years, many electrical systems that are currently in the research area will
appear. Among the various electrical systems that will be integrated on aircraft, we can mention
the electrical braking system, the engine starter and the more interesting in the frame of this
thesis, the electromechanical actuator of the nose landing gear. Considering the electrical braking
system, the electronic control units and the electrical wiring replace the hydraulic lines and
equipment and the braking torque resulting from the friction between the rotors and the stators

5www.airbus.com
6www.embraer.com
7A lever which gives the possibility to turn the rudder.
8A rudder is a control surface, attached to the upright tail of the A/C which allows the pilot to control the

aircraft in the yaw axis.
9The ailerons are hinged control surfaces attached to the trailing edge of the wing of a fixed-wing aircraft and

used to control the aircraft in roll.
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of electrical motors, when they are subjected to a pressure produced by a set of motors and
gears. When ice appears on the wings, it is especially dangerous during take-off, because a
sheet of ice can reduce lift by more than 25%. Ice accumulation is a serious safety hazard for
aircraft. Then, some deicing systems are proposed and old systems which employ the hot air
from the engine could be replaced by electrical resistors glued to the wing surface. Finally, the
steering of the aircraft which is actually based on an hydraulic actuator may be managed by an
electromechanical one.

To conclude in this field, the future issue is to find a solution to meet the ever increasing
demands of electrical energy. Several unanswered questions remain about the structure of new
networks. What could be the solutions to produce and store the energy ? How will the power
resources be managed ?

Scientific and technical objectives of the DRESS project

The goal of the DRESS project is to develop and validate a distributed and redundant electrical
steering system for an aircraft landing gear, improving aircraft safety and competitiveness.

Currently, during the ground manoeuvres, the pilot controls the aircraft by orientating the
nose landing gear wheel using a small control wheel (tiller), located on both side of the cockpit.
The nose landing wheels are orientated by hydraulic actuators supplied by the aircraft hydraulic
systems. Moreover, during automatic landing or automatic braking, the steering system is con-
trolled by flight control computers which aim at keeping the aircraft on the runway centreline
whatever the disturbances are (cross wind, asymmetric braking, deflated tyres, etc ). Never-
theless, automated systems are limited and at the end of the runway, pilots have to regain the
manual control of the aircraft insofar as no automatic ground guidance systems on taxiways exist
today.

Thus, the DRESS European project focuses on three main objectives during the development
of the new electromechanical steering actuator:

• reducing the system weight at the aircraft level, by replacing the current hy-
draulic actuation by an electrical actuation:
As it is well-known, overall aircraft weight reduction is directly linked with the minimisation
of the fuel consumption and the limitation of the impact of the aircraft on the environment.
Thus, the proposed electro-mechanical actuator will help to achieve weight reduction insofar
as the hydraulic components, such as valves, electrohydraulic servovalves, accumulators,
swivel fittings, ... dedicated to the steering system will be removed on the nose landing
gear.

• improving aircraft safety by providing higher reliability and higher efficiency:

The electromechanical actuator is composed of two separated paths which could be poten-
tially disengaged by the use of a clutch. Indeed, the two components work on the same
time for normal cases, but when one path is defective, the system is always able to func-
tion for limited operation. Then, a modular architecture will improve safety and fault
tolerance thanks to the digital bus reconfiguration capabilities. Finally, a greater efficiency
is obtained with an electromechanical system than with an hydraulic one, better energy
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management is also possible (if an actuator fails, switching to another actuator is easy)
and the system is easier to maintain insofar as the monitoring of the electrical circuit is
more reliable than finding a leak.

• investigating the integration of the electrical actuator in a future fully auto-
mated aircraft ground guidance system:

The improvements in terms of safety will permit to integrate the electromechanical ac-
tuator in a fully automated guidance system. This will give the possibility to operate
the airports in “all weather” conditions, corresponding to the Cat IIIC conditions10, not
currently authorized.

Finally, during the whole project, particular attention is focused on the modelling aspect,
considering multi domain co-simulations at each level (mechanical, thermal, power electronics,
system architecture, control laws, etc). Moreover, the last step is to build and assemble the
complete electromechanical steering system and to integrate it on a nose landing gear to perform
validation tests.

Contribution of the thesis

This thesis has been performed in the “Modélisation Intelligence Processus Systèmes” (MIPS)
laboratoy, in the “Modélisation et Identification en Automatique et en Mécanique” (MIAM)
team. During three years from September 2006 to September 2009, under the supervision of
Jean-Philippe Lauffenburger (Assistant Professor) and Michel Basset (Professor) at the Univer-
sité de Haute-Alsace, projects in aeronautical and automotive domains, concerning control laws
development, have been performed.

In the aeronautical domain, control laws have been developed, in order to give the pos-
sibility to integrate the new electromechanical steering actuator on future aircraft.

• Solutions have been proposed to control the actuator which steers the nose landing
gear. They help to consider the non-linear behaviour of the system by the use
of LPV gain scheduling techniques. Particular methodologies are proposed to
enhance the controllers, by considering the defined specifications and constraints. Ex-
perimental results, with the test bench developed in the frame of the DRESS project,
help to validate the proposed solutions.

• An initiatory study has been performed, in simulation, concerning active shimmy damping
(the damping of unstable oscillations which appear on the nose landing gear). Control
solutions based on fuzzy adaptive controllers, developed in collaboration with Thai-
Hoang Huynh from the Ho Chi Minh University, have shown that it was possible to cancel
these oscillations using active solutions.

• Automatic guidance algorithms have been developed and tested by simulation for
A/C applications. Then, they have been validated through real tests in the auto-
motive domain. Indeed, similarities exist between aeronautic and automotive problem-
atic. Models used for these two systems are similar. Thus, is possible to transpose

10defined by the International Civil Aviation Organization (ICAO)
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algorithms from the aeronautic to the automotive fields and to validate the proposed
solutions through the available test vehicle.

In the automotive domain, different control laws have been developed to favourite the
development of automated vehicles. The proposed control solutions have been validated through
experimental results with a passenger car, insofar as the possibilities to test the control algorithms
on a real aircraft were very limited. The different objectives were to:

• Improve car vehicle speed control:
In collaboration with other members of the laboratory, a new solution based on informa-
tion provided by a GPS system helps to control the speed of the vehicle. The main
contribution of this project was to define an appropriate vehicle speed order, taking
account of the road profile and the vehicle dynamics. The control solution has been
implemented and validated on the test vehicle.

• Develop control strategies for lateral dynamics control:
Control solutions which permit to follow a path have been proposed. Based on pre-
dictive control algorithms, non-linearities of the vehicle dynamics are considered,
contributing to the fully automated vehicle. The control solutions have been implemented
and validated on the test vehicle.

Organization of the document

This thesis is divided in five chapters. If the two first chapters are dedicated to theoretical
definitions, the three others present the context of the study and the different developments in
aeronautical and automotive domains.

Chapter 1 presents the notions of systems and models. The attention is focused on the
different possibilities to model a system (linear or non-linear model based on LTI, LTV, fuzzy
or neural network formulations) and under what conditions each model is more appropriate.
Then, after the modelling step, different solutions available in the literature that help to identify
parameters of models are presented. Finally, tools to reduce the size of models (particularly the
truncation methods) are studied.

Chapter 2 is dedicated to the presentation of different control solutions. Firstly, the robust
H∞ control theory is introduced. A dedicated section concentrates on the gain scheduling and
particularly on the polytopic approaches. Secondly, adaptive control solutions based on fuzzy
approximators are described. On the one hand, state feedback solutions based on direct and
indirect approach are suggested. On the other hand , output feedback strategies are presented.
Thirdly, the model predictive control strategy is detailed. This control solution is based on
a problematic on-line optimization and solutions to cope with the use of non-linear prediction
models are studied.

Chapter 3 has two main objectives. Primarily, the framework of the applications is presented:
different control loops are described and the existing approaches are presented. Then, different
models (aircraft model, nose landing gear model and shimmy model) which will be used for
simulation purposes or controller synthesis are introduced.
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Chapter 4 talks about the control of the DRESS electromechanical actuator developed in the
frame of the European project. Firstly, the steering application based on a H∞ gain scheduling
approach is presented. The proposed control solutions are validated on the DRESS test bench.
Secondly, active shimmy damping based on fuzzy adaptive solutions is detailed.

Chapter 5 is dedicated to applications developed in the automotive domain. Firstly, an
open road speed assistant solution, based on navigation for the generation of a speed profile is
presented. Secondly, different algorithms (Follow the carrot, LPV predictive control or neural
predictive control), which give the possibility to develop road following applications are described.
The different developed solutions are validated based on experimental tests made with the fully
equipped vehicle, of the laboratory.
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1.1 Introduction

As mentioned by the title of this chapter, the objective consists in trying to give an answer
to the question “Which model for which system?”. Section 1.2 will begin with a clarification
about the vocabulary proposed in the previous question; the notions of system and model are
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presented. This helps to express the link between these two notions and to clarify the modelling
step. The different control solutions proposed in this manuscript deal with different formulations
and types of models. Section 1.3 aims at giving an overview of the used notations. As soon as a
model of the system is chosen, an important step introduced in Section 1.4 consists in identifying
the parameters of the model. On the one hand, the general concept of model identification
is introduced. On the other hand, the tools appropriated for the different model formulations
are presented. Finally, Section C proposes some basic tools to reduce the complexity of models.
Indeed, very complex models are sometimes obtained and the reduction of their orders is required
to facilitate their use.

1.2 Relation between system and model

1.2.1 Definition of a system

A system (S) is an object that is activated by different stimuli. These stimuli act on the various
states that constitute the object and engender its reaction. The stimuli are partitioned in two
different kinds of signals. The first one are the inputs named u; these external signals are
generally manipulated by an operator. The others are the perturbations and are divided into
two categories: the measured disturbances w and the unknown disturbances v. The reaction of
the object is characterized by the output signals y that depend on the initial situation of the
system and the different stimuli applied to it. Figure 1.1 presents these notions. Despite the
nature of the chosen model, the identification step is required and Section 1.4 presents the needed
steps which help to estimate the parameters of the model.

S

u

w

y

v

Figure 1.1: Description of the system

In the nature, many systems surround us. Among these various systems and considering
the subject of this study, the “vehicle” is a well used system that involves several domains
and gives the possibility to clarify the notions introduced before. This mixed-domain system
is composed of mechanical variables (the wheel speed, the steering wheel angle, ...), electrical
variables (the electricity produced at the spark plug level) or thermal variables (the pressure
and the temperature of the air fuel mixture in the combustion chamber, ...). The driver acts
on the system using different inputs (the steering-wheel, the acceleration pedal, ...) and the
vehicle moves following the desired trajectory with the expected speed. When the pilot drives
its vehicle, he is able to status on the tyre-ground interface. For example, ice on road can be
visually detected by an expert or an inexperienced driver who will adapt his driving to prevent
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from an eventual slide of the vehicle. As a consequence, the tyre-ground interface acts as an
external event that can be detected and understood by the driver: it is a measured disturbance.
The system is, as well, affected by the wind, which can induce dangerous situation when the
driver has to counteract with the hand-wheel if the vehicle has to go in a straight line. The
wind is only be observed through its influence on the vehicle direction, so it acts as unknown
disturbance.

1.2.2 Definition of a model

A model (M) is a formalism used to grasp a system. It can be defined as a representation of the
system that helps to define some concepts concerning the relation between the various variables
of the system. Similarly to the system, different kind of signals permit to activate the model:
the inputs u and the measured disturbances w, while the response of the model is characterized
by its outputs y. Figure 1.2 presents the different components of the model.

M

u

w

y

Figure 1.2: Description of a model

The term model is very large. Indeed, different points of view are available in the literature
[Ljung, 1999]:

• mental model: a basic and daily life representation of a system;

• graphical model: a representation that uses numerical tables and plots;

• mathematical model: a description of the relation between the different variables of the sys-
tem. The relations are expressed in terms of mathematical expressions such as differential
equations.

The mathematical models are the principal representation used in the field of control theory
and for this reason, our attention is focused here on such a representation. A model can be of
different type or nature: it can be discrete-time or continuous-time, linear or non-linear, ...

1.2.3 Choice of a model structure: the modelling step

The notions of system (S) and model (M), are linked together [Pronzato, 2005]. The character-
istics of the model clearly depend on the considered system. The first question to be answered
during the modelling of a system is the selection of the mathematical model type (see Section
1.3.1). For example, it seems natural to describe a system that includes a lot of non-linearities
by using a model structure that incorporates these non-linearities. Moreover, the conditions in
which the model will evolve or its expected performances will define its level of description. For
example, in the automotive domain, if an application of road following in conventional driving
conditions is developed, the vehicle and particularly the tyre can be described by a linear model
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[Cole et al., 2006]. Nevertheless, an application that aims at performing a double lane change
at high speed has to consider different dynamics. In this case, an improved vehicle model that
notably includes tyre non-linearities must be considered [Falcone et al., 2007b]. Generally, the
complexity of the model depends on the application and the system to be described. A trade-off
between simplicity and accuracy must be performed. Then, if the parameters of the model are
not known, their identification is required. Finally, based on the available data and considering
the identified model, it is important to consider the validity conditions of the model: how reliable
is the obtained model with respect to the goal to be achieved?

The next section of this chapter will introduce definitions required in this manuscript. The
identification procedure that permits to obtain the model parameters will be discussed. The
MOR methods, required to reduce the order of the model, are finally presented. Considering
our project, Chapter 5 will present the identification results of a vehicle model. It will be shown
that based on the identification tools presented in this chapter, two models will be proposed. In
the following, Chapter 4 which notably considers the control of the Nose Landing Gear (NLG)
based on H∞ theory, will use the notion of model reduction to obtain low order controllers.

1.3 Solutions to model a system

1.3.1 Types of the model

There are three main types of model that characterize the knowledge of a system:

• a black box model;

• a white box model;

• a grey box model.

A black box model is viewed in term of its input/output relationship considering that the
knowledge of its internal working is not taken into account. These types of models are obtained
by experimental measurements of the inputs and outputs and give the possibility to reproduce
a behaviour that has been learned. They consider that an a priori knowledge of the system is
not required and they are especially useful for control purposes. They give the possibility to
obtain models with very simple structure which is an advantage for real time implementation.
However, this simplicity makes that these models are not flexible, if a slightly difference has to
be introduced in the model, an important work could be necessary to calibrate the new model.
These types of models are not suitable to help the comprehension of the system insofar as they
do not have physical meanings. For example, artificial neural networks (ANN) are one of the
well-known black box models.

A white box model is characterized by the use of physical laws to describe the behaviour
of the system it represents. Indeed, based on an a priori knowledge of the system, a set of
equations is obtained. These types of models are based on physical parameters such as masses,
stiffnesses, ... and help to obtain detailed and realistic models. The introduction of these
physical parameters is a real advantage when flexible models are required: changing the value
of one parameter can lead to another physical model. However, this accuracy and this flexibility
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introduce two important drawbacks: these types of models introduce a higher complexity level
and are computer demanding.

A grey box model is an hybridation of white and black box models. Grey models are based
on a compromise between the introduction of physical expressions when an a priori knowledge is
available and experimental measurements. Based on the hybridation, they can get advantages of
both black and white models. The compromise helps to have a physical and flexible representation
that can keep a simple structure and permits real-time implementation.

As a conclusion, the choice of the model type depends on the aim of this model, on the cost
to obtain the model and the data available for its identification. Most of the time, the grey box
models are chosen, insofar as they keep the advantages of the two other types.

The reader can find more details about the types of models and their uses in [Ljung, 1999],
[Richalet, 1991] and [Schmitt, 1999].

1.3.2 State Space formulation

1.3.2.1 Linear model

The modelling of a system using a Linear Time Invariant (LTI) representation is the first and
commonly used representation in the control engineering domain. The system is described by
linear equations which are generally composed of a set of Ordinary Differential Equations (ODE).
For a non-linear model, these equations can be obtained after the linearisation of the non-linear
system behaviour around a local point. This approach helps to obtain a model that is validated
around an operating point.

Definition 1 Linear Time Invariant (LTI) model
Considering the matrices A ∈ Rn×n (the dynamic matrix), B ∈ Rn×nu (the control matrix),

C ∈ Rny×n (the output matrix) and D ∈ Rny×nu (the input/output matrix), a system can be
described by a Linear Time Invariant (LTI) model MLTI such that:

MLTI :

{
ẋ(t) = A x(t) + B u(t),
y(t) = C x(t) + D u(t),

(1.1)

where x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny are respectively the state vector, the input vector
and the output vector of the model.

Comment: The matrices A, B, C, D constitute a particular realization of the state
space model. It is obvious that this realization is not unique. Among
the various possible realizations, there is a special interest in the minimal
realization (computationally less demanding and easy to use realization).
Similarly, it exists different minimal realizations. These latter have the
particularity to be realizations with the smallest dimension of the dy-
namic matrix A. In the case of minimal realizations, the dimension of
the matrix A which indicates the “complexity” of the state space model,
is commonly named the McMillan degree of the state space model. The
methods which help to obtain the minimal realizations are proposed in
[Gilbert, 1963] and [Kalman, 1963].
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1.3.2.2 Structural properties of the linear state space model

This section gives some definitions linked to the state space model.
Firstly, the properties of observability, controllability, detectability and stabilizability are

introduced. These notions are well-known properties which are primordial when a control solution
or an observer have to be synthesized. For example, as it could be read in Section 2.2, in the
frame of H∞ control theory, the algorithm which helps to synthesize the controller needs some
hypothesis. Indeed, when the system is stabilizable and detectable, the algorithm could find a
solution.

Secondly, the definition of the singular values is proposed. This is required for the MOR tools.
As it is detailed in Section C.2, Hankel singular values help to define the balanced realization
which is recognized for its good numerical properties.

Thirdly, the norm of signals and models are given. These definitions are required for two
main purposes. On the one hand, in the frame of MOR, the ‖‖∞ norm is used to compare the
initial model and the reduced model. On the other hand, when robust controllers are developed,
the aim of the optimisation algorithm is to minimize the ‖‖∞ norm of a closed-loop transfer
function. Finally, the notion of Lyapunov stability is briefly reminded. This notion is primordial
insofar as stability is the first required property of a closed loop system.

Controllability and observability

This paragraph presents the properties of observability and controllability of linear state space
models. These concepts respectively deal with the possibility to reconstruct the state from
inputs and outputs and the possibility to influence the state by manipulating the inputs. They
are commonly used to characterize the stability of closed-loop systems (see for example the
requirements for obtaining an H∞ controller in Section 2.2).

The observability matrix O and the controllability matrix C are defined by:

Definition 2 Observability matrix

The observability matrix is O =




C

CA

· · ·
CAn−1




Definition 3 Controllability matrix
The controllability matrix is C =

[
B AB · · · An−1B

]

The observability gramian Wo and the controllability gramian Wc are defined by:

Definition 4 Observability gramian
Wo =

∫∞
0 eAtCCT eAT tdt is the solution of the Lyapunov equation:

AWo + W T
o = −CCT (1.2)

Definition 5 Controllability gramian
Wc =

∫∞
0 eAtBBT eAT tdt is the solution of the Lyapunov equation:

AWc + W T
c = −BBT (1.3)
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Generally, the Kalman criteria are used to define the notions of observability and controlla-
bility [Kalman and Bucy, 1961].

Definition 6 Kalman observability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation,

the model is observable if and only if rank(O) = rank







C

CA

· · ·
CAn−1







= n with n the dimension

of the state vector x.

Definition 7 Kalman controllability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation,

the model is controllable if and only if rank(C) = rank
([

B AB · · · An−1B
])

= n with n the
dimension of the state vector x.

Moreover, it is important to distinguish the states, modes or dynamics which are not observ-
able or controllable. Then, an alternative characterisation, which is sometimes called Popov-
Belevitch-Hautus (PBH) test, presents an equivalent condition in terms of the eigenmodes of the
model [Robert and Douglas, 2007]. This characterisation gives the possibility to define the no-
tions of stabilizability which consider the asymptotic stability of uncontrollable and unobservable
models.

The representation of the system S by the model M is observable if the state vector can be
reconstructed from the inputs and outputs.

Definition 8 Observability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation

and λ the eigenvalues of A, the model is observable if rank

([
A− λI

C

])
= n,∀λ ∈ C with I

the identity matrix in appropriate dimension and n the system order.

The representation of the system S by the model M is detectable if the unobservable states
are stable.

Definition 9 Detectability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation

and λ the eigenvalues of A, the model is detectable if rank

([
A− λI

C

])
= n, ∀λ ∈ C : <[λ] ≥ 0

with I the identity matrix in appropriate dimension and n the system order.

The representation of the system S by the model M is controllable if, starting from an arbi-
trary initial state x0, any other state xi can be reached in finite time by choosing an appropriate
input sequence.

Definition 10 Controllability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation

and λ the eigenvalues of A, the model is controllable if rank ([A− λI,B]) = n,∀λ ∈ C with I

the identity matrix in appropriate dimension and n the system order.
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The representation of the system S by the modelM is stabilizable if the uncontrollable states
are stable.

Definition 11 Stabilizability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation

and λ the eigenvalues of A, the model is stabilizable if rank ([A− λI, B]) = n, ∀λ ∈ C : <[λ] ≥ 0
with I the identity matrix in appropriate dimension and n the system order.

Singular values

In the field of MOR and when the norm of models are used (for example in H∞ control theory),
the notions of singular values and Hankel singular values are required.

Definition 12 Singular values
Considering the matrix M ∈ Rm×n, there are unitary matrices

U = [u1, u2, · · · , um] ∈ Rm×m (1.4)

V = [v1, v2, · · · , vn] ∈ Rn×n (1.5)

such that,
M = UΣV T (1.6)

where,

Σ =

[
Σ1 0
0 0

]

Σ1 = diag(σ1, · · · , σp)
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min(m,n)

(1.7)

(σ1, · · · , σp) are called the singular values of M.

Definition 13 Hankel singular values
The Hankel singular values (σH

1 , · · · , σH
p ) are calculated as the square roots of the eigenvalues

(λ1, · · · , λp) for the product of the observability gramian Wo and the controllability gramian Wc,
then

σH
i =

√
λi(WcWo) (1.8)

Norm of the model

Definition 14 H2 norm
The norm L2 of a signal x(t) which characterize its energy is defined by:

‖x(t))‖2 =

√∫ +∞

0
x(t)T x(t)dt (1.9)

Definition 15 H∞ norm
The H∞ norm of a LTI model characterized by its transfer function G(jw) (if G(s) is ana-

lytically in C), its input u(t) and its output y(t) is defined by:

‖G(jw)‖∞ = sup
u(t)

‖y‖2

‖u‖2

= sup
w∈R

σ (G(jw)) (1.10)

with u is square-integrable.
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Commentary This norm is mainly used to define controllers in the case of robust H∞
control theory and it helps to compare model in the field of MOR.

For SISO models, it represents the maximal peak value on the Bode
magnitude plot of G(jw).

Lyapunov stability

An informal definition of stability considers that an equilibrium state is stable if, whenever
the initial state is near this equilibrium state, the state remains near or perhaps tends to the
equilibrium state. The notion of stability and particularly the Lyapunov stability is described
by the following definition:

Definition 16 Lyapunov stability
Considering the matrices (A,B,C,D) that describe the system by using a LTI representation

the model is stable in the sense of Lyapunov if and only if the eigenvalues of A have strictly
negative real parts.

1.3.2.3 Linear Varying model

LTI models considers that the parameters are invariant. However, these parameters can change
according to a trajectory and the LTI model becomes a Linear Varying model. Linear Varying
models can be viewed as a combination of LTI models where a linear structure is maintained.
This structure permits to obtain a non-linear behaviour keeping a linear structure. In order
to take into consideration these parameter non-linearities, different modellings are given in the
literature [Biannic, 1996]:

• Linear Time Varying (LTV) models are defined by the time-dependence of the state-space
matrices. The dependencies are known a priori. For example, an electrical thermal model
may be characterized by a LTV model where the resistance depends on time R(t).

• Linear Parameter Varying (LPV) models are defined by state-space matrices that are de-
pendent on a set of varying parameters. The variations of the parameters depend only on
time. For example, a longitudinal speed dependent bicycle model is a LPV model, because
the matrices depends on the longitudinal speed Vx.

• Quasi Linear Parameter Varying (q-LPV) models are defined by state-space matrices that
are dependent on a set of varying parameters. The variations of the parameters depend on
both the time and the measured outputs of the system. For instance, a simple spring/mass
system may be modelled by a q-LPV model considering that the spring stiffness depends
on the deflection.

These three types of models which permit to describe the NLG dynamics or the vehicles
dynamics are defined afterwards.

Definition 17 Linear Time Varying (LTV) model

9
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Considering the matrices A(t) ∈ Rn×n, B(t) ∈ Rn×nu, C(t) ∈ Rny×n, D(t) ∈ Rny×nu, the
system can be described by the Linear Time Varying (LTV) model MLTV such that:

MLTV :

{
ẋ(t) = A(t) x(t) + B(t) u(t),
y(t) = C(t) x(t) + D(t) u(t),

(1.11)

Definition 18 Linear Parameter Varying (LPV) model
Considering the matrices A(ρt(t)) ∈ Rn×n, B(ρt(t)) ∈ Rn×nu, C(ρt(t)) ∈ Rny×n, D(ρt(t)) ∈

Rny×nu and the time varying parameter ρt ∈ Γ ⊂ Rp where Γ is a compact set. The system can
be described by the Linear Parameter Varying (LPV) model MLPV such that:

MLPV :

{
ẋ(t) = A(ρt(t)) x(t) + B(ρt(t)) u(t),
y(t) = C(ρt(t)) x(t) + D(ρt(t)) u(t),

(1.12)

Definition 19 Quasi Linear Parameter Varying (q-LPV) model
Considering the matrices A(ρx(x), ρt(t)) ∈ Rn×n, B(ρx(x), ρt(t)) ∈ Rn×nu, C(ρx(x), ρt(t)) ∈

Rny×n, D(ρx(x), ρt(t)) ∈ Rny×nu and the time varying parameter (ρx, ρt) ∈ Γ ⊂ Rp where Γ is a
compact set. The system can be described by the quasi Linear Parameter Varying (q-LPV) model
Mq−LPV such that:

Mq−LPV :

{
ẋ(t) = A(ρx(x), ρt(t)) x(t) + B(ρx(x), ρt(t)) u(t),
y(t) = C(ρx(x), ρt(t)) x(t) + D(ρx(x), ρt(t)) u(t),

(1.13)

The LPV and q-LPV formulations consider that the state space matrices depend on the
varying parameters. However, there are different types of dependencies: the LPV-A dependency,
the LPV-R dependency or the Linear Fractional Transformation (LFT). The LPV-A dependency
which means affine parameter dependency considers that the state matrix A is given by A(t) =
A0+A1ρ1(t)+· · ·+Anρn(t). Similarly, the LPV-R dependency has the form of a rational function
expressed by A(t) = [An0 + An1ρn1(t) + · · ·+ Annρnn(t)] [Ad0 + Ad1ρd1(t) + · · ·+ Adnρdn(t)]−1.
Finally, the LFT dependency is based on the transformation of the parameter dependent system
into an uncertain system. Here, attention is focused on another dependency type which is the
polytopic one. This last type of dependency is interesting insofar as a lot of tools, adapted for
polytopic system, are available in the literature. Moreover, this kind of dependency will be used
in Chapter 4, where solutions for the control of the NLG based on gain scheduling polytopic
approaches are proposed.

Definition 20 Polytopic LPV or q-LPV model
The LPV or q-LPV models are considered as polytopic when ρ evolves in the polytope P =

Co {w1, · · · , wN} formed by the vertices wi and when the state space matrices of the model have
a linear dependency in the parameter ρ such that:

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
=

N∑

i=1

αi(ρ)

[
A(wi) B(wi)
C(wi) D(wi)

]
(1.14)

where

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
∈ Co

{[
A(w1) B(w1)
C(w1) D(w1)

]
· · ·

[
A(wN ) B(wN )
C(wN ) D(wN )

]}
formed by the

evaluation of the state space matrices at each vertices of P and where αi ≥ 0 ∀i and
N∑

i=1
αi = 1.

10



1.3. Solutions to model a system

1.3.2.4 Piecewise Affine Model

A different way to approximate a smooth non-linear system with keeping a linear formulation
of the model is to introduce the notion of Piecewise Affine (PWA) models. They are defined by
series of affine linear models where the states evolution is governed by invariant transitions from
one affine linear model to another. The state-input space is partitioned in region Xi with i =
1, · · · , s and every dynamics is defined in this region. For example, such model formulation is
very interesting when the dynamics of a car vehicle and notably the tyre contributions must
be considered. This latter can be modelled by the well-known non-linear Pacejka tyre model
[Pacejka, 2006] (cf. Appendix A.3.3) but a linear model versus a non-linear model is easier to
use from a control theory point of view. Then, the non-linear function describing the lateral
tyre force (Fy) versus the slip angle (β) from the Pacejka model could be replaced by a PWA
representation as presented in Figure 1.3.

β (◦)

F
y

(N
)

Tyre lateral force based on a PWA model

Tyre lateral force based on the Pacejka’s model
5

10

15

20

25
×104

0
0 5 10 15 20 25

X1 X2 X3

Figure 1.3: Approximation of the tyre lateral force by a PWA model

Definition 21 Piecewise affine (PWA) model
Considering the matrices and the vectors Ai ∈ Rn×n, Bi ∈ Rn×nu , Ci ∈ Rny×n, Di ∈ Rny×nu,

fi ∈ Rnu and gi ∈ Rny ; the system can be described by the Piecewise Affine (PWA) modelMPWA

such that:

MPWA :

{
ẋ(t) = Ai(t) x(t) + Bi(t) u(t) + fi,

y(t) = Ci(t) x(t) + Di(t) u(t) + gi,
for [x(t)T , u(t)T ]T ∈ Xi (1.15)

11



Chapter 1. Which model for which system?

where x(t), u(t) and y(t) are respectively the state vector, the input vector and the output vector
of the system and Xi, i ∈ 1, 2, ..., s is a polyhedral partition of the state-input space such that:

• Xi ∩ Xj = ∅

• [x(t)T , u(t)T ]T ∈ Xi if Eix(t) + Eiu(t) < Ei

•
s⋃

i=1
Xi = X with X the global state-input space.

1.3.2.5 Non-linear model

LTI or Linear Varying models are restrictive insofar a lot of real systems include non-linearities.
In this case, it is easy to understand that a non-linear model will be more appropriate than a
linear one, giving a better approximation of the considered system. However, in terms of model
identification, dynamics observation or controller synthesis, the use of a non-linear representation
engenders an important complexity.

Definition 22 Non-linear model
Considering the non-linear functions f : Rn×Rnu → Rn and g : Rn×Rnu → Rny the system

can be described by the non-linear model MNon−linear such that:

MNon−linear :

{
ẋ(t) = f(x(t), u(t)),
y(t) = g(x(t), u(t)),

(1.16)

where x(t), u(t) and y(t) are respectively the state vector, the input vector and the output vector
of the system.

Commentary The notions of observability, detectability, controllability, stabilizabil-
ity and stability are expressed previously in the case of particular
linear state space models. It is obvious that the extension to lin-
ear varying models, PWA models or non-linear models is possible
[Hermann and Krener, 1977] [Lyapunov, 1992].

1.3.3 Artificial Neural Network (ANN) formulation

Chapter 5 will deal with automatic guidance and in this field, a control architecture based on ANN
and Model Predictive Control (MPC) is proposed. It will be shown that the ANN modelling tool
eliminates the limitations of common linear models that are based on a fixed structure. Then,
this current section introduces the basic notions of ANN, required to understand the following
applications.

An ANN model aims at reproducing the behaviour of a brain-like system [Fuller, 1995]. These
kinds of models function are parallel distributed computing networks and they are able to learn
and generalize the behaviour of the systems. An ANN model is characterized by its architecture
(the number of inputs and outputs, the number of hidden layers, ...), the method that permits to
obtain the parameters of the network (wj,k and W k in Figure 1.4) and the activation function,
the mathematical function that gives the output based on the inputs that can be a threshold
function, a sigmoidal function or a tangent hyperbolic function [Fausett, 1994]. The following

12



1.3. Solutions to model a system

just reminds the notations used in this manuscript. An improved description of the ANN can be
found in [Fausett, 1994], [Fuller, 1995] or [Abdeslam, 2005].

The ANN model uses n inputs, nCC neurons in the hidden layer and one output; it is
presented in Figure 1.4.

x1

x2

xn

wj,k

N1

N2

NnCC

W k

∑
y

Figure 1.4: Multi layer Neural Network

The ANN model uses the following variables:

• ok: with k ∈ [1, · · · , nCC] is the input of the hidden layer k,

• o: the [nCC, 1] vector of ok values,

• Ok with k ∈ [1, · · · , nCC] is the output of the hidden layer k,

• O: the [nCC, 1] vector of Ok values,

• wj,k with j ∈ [1, · · · , n] and k ∈ [1, · · · , nCC] is the weight of the input layer,

• w: the [n,nCC] vector of wj,k values,

• W k with k ∈ [1, · · · , nCC] is the weight of the output layer,

• W : the [nCC,1] vector of W k values.

The output of the system is defined by:

y =
nCC∑

k=1

W kOk = W T O. (1.17)

The activation function of the hidden layer is equal to:

1
1 + exp(−X)

, (1.18)

then, the output of the hidden layer is obtained by:

Ok =
1

1 + exp(−ok)
, (1.19)
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Chapter 1. Which model for which system?

The input of the hidden layer is obtained with:

ok =
n∑

j=1

wj,kxj = wT x. (1.20)

Different activation functions are available in the literature. The sigmoid has been chosen
insofar as it has the property of being similar to the step function, but with the addition of a
region of uncertainty. Then, sigmoid functions are very similar to the input-output relationships
of biological neurons.

1.3.4 Fuzzy Logic formulation

Chapter 4 will focus on NLG shimmy control and in this field, fuzzy adaptive control solutions
are proposed. In this particular control application, a fuzzy system helps to identify in real-
time the dynamics of the NLG. These latter will be used to compute the control signal. Then,
this section introduces the basic notions of fuzzy logic which will be required to understand the
following application. To find more details about fuzzy logic, the reader may consider the work
of [Zadeh, 1965], [Passino and Yurkovich, 1998] and [Kosko, 1993].

Fuzzy systems are one of the most useful approaches for the integration of expert knowledge.
This solution is generally used for plants that are mathematically poorly modelled and where
the experience of an operator is needed. The approximation based on a fuzzy system features
four main components, namely fuzzification, fuzzy rule base, inference and defuzzification (see
Figure 1.5):

• Fuzzification is the stage in which the input crisp values (inputs have real number values)
are transformed into fuzzy set (a set whose elements have degrees of membership);

• Fuzzy rule base, which consists of a set of linguistic rules in the form “IF a set of conditions
are satisfied, THEN a set of consequences are inferred”, is then performed;

• Inference is the procedure whereby the values of the fuzzy variables are inferred from the
fuzzy rule base, generating a fuzzy value for the output variables;

• In the final stage, the defuzzification aims at transforming these output fuzzy values into
crisp data that can be used for the following parts of the control algorithm.

A representation of a fuzzy system is shown in figure 1.5.
Several standard fuzzy systems based on the previous four main components are introduced

in the literature. Particularly, the three algorithms developed for the NLG shimmy control (see
Sections 4.3.3 and 4.3.4) are based on the Takagi-Sugeno fuzzy system [Takagi and Sugeno, 1985].
It is a MISO (multi input, single output) fuzzy logic system mapping from an input vector
x = [x1, x2, ..., xn]T ∈ Rn to an output y = f(x) ∈ R. First, the universe of discourse (that
means the set of all possible values) of each input of the fuzzy system is studied and this universe
is decomposed into one or more fuzzy subsets. Furthermore, the fuzzy model consists of p fuzzy
rules (corresponding to all combinations of the inputs). Generally, the output consequences of
each fuzzy rule is a function of the state. In the approach proposed for the NLG control, the
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Figure 1.5: Fuzzy system

output consequences are considered as constant from θ1 to θp. The fuzzy rules have the following
form:

R1 : If (x1 is F 1
1 and · · ·and xn is Fn

1 ) Then y1 = θ1

...
Rp : If (x1 is F 1

k and · · · and xn is Fn
l ) Then yp = θp

(1.21)

where F j
i is the ith fuzzy set (a part of discourse universe) for the state variable j (i = 1 . . . k

for the state x1 or i = 1 . . . l for the state xn, j = 1 . . . n). For each fuzzy set F j
i , a membership

function µ such that µ
F j

i
∈ [0, 1] is defined. This membership function enables to quantify how

well an input state xi belongs to the subset F j
i . Several standard membership functions exist

in the literature and the Gaussian membership function has been retained for the controllers
proposed in Section 2.3.

1.4 Model identification

1.4.1 General concept

The process of determining the numerical values of the different parameters of the model repre-
sentation is known as model identification. This step is fundamental for the implementation of
a competitive control strategy [Landau and Besançon-Voda, 2001]. For example, a H∞ control
strategy needs a model to synthesize the optimal controller, or the Model Predictive Control
(MPC) requires a model to predict the plant behaviour and obtain the optimal control signal.
These control strategies depend on the model defined during the model identification procedure.
This section helps to understand the results of the identification procedure of LPV and ANN
models dedicated to control purposes and presented in Sections 4 and 5.

Considering a system S and a model M(pi) that depends on several parameters pi, the
identification process aims at obtaining these parameters so that the system and the model have
similar input-output behaviour. The parameters pi may be physical parameters like the mass
or the stiffness for a white box model or parameters without physical meaning in the case of a
black box model. The same input signal u is used to activate the system and the model and
their respective outputs y and ŷ are compared. Finally the output error criteria e = y − ŷ is
used to optimally adjust the values of the parameters pi. Figure 1.6 presents these different
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contributions.
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Figure 1.6: Identification procedure based on output error criteria

The identification of model parameters is always divided in four steps [Caroux, 2007]:

• protocol definition,

• cost criterion definition,

• parameter estimation,

• validation process.

The protocol definition aims at preparing the different sensors that should be used to measure
the input and output signals. In this step, the properties of the measures are studied: what is
the suitable sample time, what are the required filters, . . .? Then, the choice of the input signals
is performed, taking account of the model to be obtained: what are the frequencies that must
be excited? Finally, it is important to evaluate the constraints linked to the input signals.
For example, considering the identification of the vehicle model parameters, it is obvious that
the commonly used identification signal (PRBS: Pseudo Random Binary Sequence) cannot be
used: this signal is not feasible and a signal that takes account of the driver limitations must be
considered.

The cost criterion is used to describe the difference between the system to be identified and
the model. The commonly used cost criteria are the absolute error and the quadratic error. The
identification results presented in the following chapters are based on the quadratic criterion J .
This cost criterion is easier to implement but it is sensitive to “mad points”. It is defined by:

J = eT Qe (1.22)

such that Q is a weighting matrix which weights the different outputs and the error e = y− ŷ as
presented in Figure 1.6

The parameter estimation uses an optimization algorithm aiming at reducing the difference
between the output of the system y and the output of the model ŷ and at providing step by

16



1.4. Model identification

step an appropriate value to the model parameters. Considering p̂(k) the estimation of the
parameters, the value of p̂ at the next step is obtained by:

p̂(k + 1) = p̂(k) + α(k)d(k) (1.23)

with d(k) the direction of the research and α(k) the adaptation gain which characterizes the
evolution speed. This general formulation permits to regroup different optimization methods.
First, the direct methods as the simplex method ([Dantzig, 1963]) or the Gauss method do not
require the calculation of the derivative criterion. Secondly, first order methods as the gradient
descent methods [Snyman, 2005]) use the first derivative and are slow methods. Finally, the
Newton, Gauss-Newton or Levenberg-Marquardt methods ([Björck, 1996] and [Levenberg, 1944])
use the first and second derivative.

The last step of the identification process consists in the validation of the obtained parameters
and the behaviour of the identified model. This step is divided into two phases. When white
or grey box models are identified, the physical meaning of the obtained parameters is studied.
For example, a model that considers an identified negative mass could not be accepted. Then, a
validation input sequence, different from the identification input signal, is created. The response
of the system using this new input signal is compared with the response of the model. If the two
responses are similar, considering an acceptable residual error, the identified model is validated.

1.4.2 Identification considering a LPV model

Identification of LPV models is the subject of recent interest [Nemani et al., 1995]
[Previdi and Lovera, 1999] [Ljung, 2008]. Two approaches are distinguished in the literature:

• the global approach, where a single experiment helps to directly obtain a parameter-
dependent model;

• the local approach that aims at using multiple experiments to obtain many LTI models
that will be interpolated

The identification of the LPV model used in this project is based on the local approach (see
Section 5.4).

The identification method is divided into three steps. First, the space of the varying param-
eter is gridded. Secondly, the identification of the model parameters, using the method defined
in Section 1.4.1, is made for each values of the varying parameter. Finally, the different obtained
values are interpolated.

1.4.3 Identification considering a PWA model

Identification of a PWA models can be separated in two different cases. On the one hand, this
task can be an easy problem when the polyhedral partition is known. In this case, it is an
ordinary least square problem. On the other hand, it can become a hard problem when the
polyhedral partition is unknown. In this case, non-convex optimization problems are generally
obtained [Bemporad et al., 2003] [Ferrari-Trecate et al., 2003].
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1.4.4 Identification considering an Artificial Neural Network model

In the literature, different methods concerning the identification of multi-layer ANN models are
described [Abdeslam, 2005]. Basically, it is possible to distinguish on-line and off-line methods.
On-line approaches are interesting when a lot of perturbations are applied on the system whereas
off-line approaches are better to reduce the complexity notably when the ANN model is used
for control purposes. Then, the learning phase can be a direct identification or an inverse
identification. On the one hand, the difference between the system output and the model output
helps to obtain the parameters of the ANN model. On the other hand, the input of the system is
compared with the output of the ANN model. The ANN model, used in Section 5, is identified
using an off-line method with the direct solution.

Identification method, called backpropagation method, adapt the weights of the input and
output layers wk and W k to minimize the squared error of the output provided by the network.
The commonly used method for the weighting adaptation is the gradient descent method. Con-
sidering an input/output training pattern (u(t),y(t)) the error measurement between the system
and the ANN model permits to define the quadratic error:

E =
1
2
(y − ŷ)2. (1.24)

Then, the adaptation which minimizes the quadratic error function uses the following iteration
process:

W = W − η
∂E

∂W
(1.25)

w = w − η
∂E

∂w
(1.26)

Then, the cost functions JW =
∂E

∂W
and Jw =

∂E

∂w
are defined by:

JW =
1
2

∂

∂W
(y − ŷ)2

=
1
2

∂

∂W
(y −W T O)2

= (y −W T O)
∂

∂W
(y −W T O)

= −(y −W T O)O

= −eO (1.27)

and
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Jw =
1
2

∂

∂w
(y − ŷ)2

=
1
2

∂

∂w
(y − W T

1 + exp(−wT x)
)2

= (y − W T

1 + exp(−wT x)
)

∂

∂w
(y − W T

1 + exp(−wT x)
)

= −(y − W T

1 + exp(−wT x)
)

xexp(−wT x)
(1 + exp(−wT x))2

W T

= −(y − W T

1 + exp(−wT x)
)xOT (1−O)W T

= −(y −W T O)xOT (1−O)W T

= −exOT (1−O)W T (1.28)

1.5 Conclusion

In this chapter, the presentation of the system S (see Section 1.2.1) and the model M (see
Section 1.2.2) has been done. These different notions are summarized in Figure 1.7. First, the

S

M

M
r
(a, b, c, · · · )

M(a, b, c, · · · )

Take the system in hand

Model the system

Reduce the model

Identify the parameters a, b, c, · · ·

Figure 1.7: Notions presented in Chapter 1

system must be studied to define all its components. Then, the modelling step starts (see Section
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1.3) and following the chosen structure of the model, its parameters are identified (see Section
1.4). Finally, when low order models are required, model reduction tools presented in Appendix
C may be used.

The different model formulations which have been introduced in this chapter will be used in
the following. For instance, it will be shown in Chapter 3 that the NLG could be described with
an LPV formulation, the shimmy phenomenon uses a non-linear model and finally the vehicle
dynamics are modelled with an ANN model. Then, identification tools have been proposed and
Chapter 5 will present some results based on LPV model and ANN model identification. Finally,
model order reduction techniques have been detailed. It will be shown in Chapter 4 that such
tools will be used for high order controller reduction.

As a conclusion, the chapter has tried to answer the question “Which model for which sys-
tem?”. It has been shown that state space formulation is adapted for linear model when the
physical description of the system is known. Indeed, the state space matrices are directly defined
based on the parameters of the system. Moreover, when some non-linearities are detected in the
system, it is interesting to be in favour of LPV models, insofar as efficient control tools are avail-
able with such modelling. Furthermore, it is sometimes required to consider a non-linear model.
In consequence of hard non-linearities of the system, the modelling step is constrained by the
use of non-linear model, despite the well-known difficulties which will be encountered with such
solutions. Finally, when no experience of the model or when difficulties are encountered during
the modelling step, it is possible to opt for black box models such as ANN or fuzzy models.

After describing the system with an appropriated model, it is possible to control this system.
For this task, different tools are available in the literature and it could shown in the following
chapter that the choice of the control solution frequently depends on the nature of the model. As
a consequence, Chapter 2 will try to answer the question “Which control law for which model?”
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La théorie, c’est quand on sait tout et
que rien ne fonctionne. La pratique, c’est
quand tout fonctionne et que personne ne
sait pourquoi. Ici, nous avons réuni
théorie et pratique : Rien ne fonctionne...
et personne ne sait pourquoi !

Albert Einstein

Chapter 2

Which control law for which model?
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Chapter 2. Which control law for which model?

2.1 Introduction

Chapter 1 presented the link between the system and the model. This chapter aims at discussing
the relation between the model and the control law. It could be seen that depending on the
model formulation, some solutions are more suitable.

Firstly, it is well-known that the model is an imperfect representation of the system. A robust
control solution can help to consider, in the design of the controller, the unmodeled dynamics,
the perturbations and/or the noise affecting the signals [Doyle et al., 1990]. Then, Section 2.2
introduces the theoretical aspect of H∞ synthesis [Doyle et al., 1990]. A particular interest fo-
cuses on the solutions adapted to LPV models [Apkarian and Gahinet, 1995]. Secondly, a control
solution well-suited for non-linear models is presented in Section 2.3. The provided solutions are
based on feedback linearisation [Khalil, 2002] which is a common approach for such non-linear
models. It consists in transforming the non-linear model into an equivalent linear one through
a change of variables and the determination of a suitable control input. Moreover, in case of
poor knowledge of the system behaviour, which is the case here, the control solutions integrate a
real time identification of the system dynamics allowing the adaptation of the control law. Thus,
Section 2.3 presents two states feedback and one output feedback fuzzy adaptive control solutions
[Spooner and Passino, 1996] [Calise et al., 2001]. Thirdly, MPC, a control solution that requires
the resolution of an on-line optimization algorithm is introduced [Garcia and Morari, 1989]. A
trade off between the complexity of the model and the system dynamics has to be consid-
ered when using such a solution. Indeed, due to the on-line optimization, a complex model (a
non-linear model for instance) must have low dynamics as the chemical systems, to ensure the
optimization resolution. As a conclusion, Section 2.4 presents the theoretical aspects of MPC
by considering both a state space [Maciejowski, 2000] formulation and an ANN formulation
[Norgaard et al., 1999]. A particular attention will be paid on constrained optimization.

The control solutions presented in this chapter will be used in the applications presented in
Chapters 4 and 5. The H∞ synthesis permits to control the NLG in order to respond to the
wheel angle demand from the pilot or the automatic guidance system. A non-linear adaptive
control solution is used to damp shimmy oscillations of the NLG. Finally, the automatic guidance,
applied in simulation on an A/C model and in real experiments on a passenger vehicle, is made
possible through MPC

2.2 H∞ synthesis: theoretical aspects

2.2.1 Introduction

Based on Chapter 1, it has been explained that models do not represent precisely the behaviour
of the system. However, model-based controllers do not be influenced by an imperfect represen-
tation of the reality. Thus, the robustness of the control solution must be taken into account.
Considering the required characteristics of the closed-loop system in terms of performances or
stability, a controller K is robust when the considered characteristics are respected despite the
difference between the model and the reality. Two robust properties are frequently examined:
the robust stability and the robust performance. A controller K provides robust stability when
it provides internal stability despite the difference between the model and the reality. Similarly,
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a controller provides robust performance when the performances that must be reached by the
closed-loop system are not degraded by the imperfect model. In the guideline of robustness, the
controllers developed in the H∞ framework are well-suited.

The synthesis of H∞ controllers helps to include the inaccuracies of the model and the
perturbations acting on the system. To provide the required closed-loop system, the H∞ control
solution proposes to describe the specifications to be reached in terms of mathematical criteria.
Then, an optimization algorithm is required to obtain the state space representation of the
controller. This control solution is adapted for Multi-Input/Multi-Output (MIMO) systems
and the synthesis helps to obtain a linear controller. Nevertheless, it is possible to extend this
formalism to LPV systems to obtain non-linear controllers by keeping a linear structure. This
formalism is detailed in this section.

Currently, H∞ formalism is employed in various areas: medical applications
[Cuvillon et al., 2005], [Ruiz-Velázqueza et al., 2004]; aeronautic and spacecraft applica-
tions [Liu et al., 2003], [Ballois and Duc, 1996] ; vehicle applications [Wang et al., 2007],
[Palladino et al., 2006] ; industrial applications [Knittel et al., 2007], etc.

2.2.2 H∞ synthesis for LTI models

2.2.2.1 Introduction

H∞ control theory helps to synthesize an optimal controller respecting performance criteria.
These criteria are based on frequency concepts and are represented by weighting filters. The
latter enables to generate error signals so as to characterize the performances that the system
must reach.

This control strategy is based on the general control configuration presented in Figure 2.1:

P

K

w(t) z(t)

u(t) y(t)

generalized model

controller

N closed-loop transfer function

Figure 2.1: General control configuration (standard form)

Here, w(t) represents the disturbances, the noise signals and the reference inputs, u(t) denotes
the control inputs, z(t) is the error signal to be minimized and y(t) denotes the measurements.
The “generalized model”, represented by P in Figure 2.1 is an input/output inter-connection
matrix, which contains the generally so called “system” as well as the weighting filters. Finally,
the block K is the controller to be designed and is intended to minimize the impact of w(t) to
z(t).
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Figure 2.2 details the generalized model P mentioned in Figure 2.1. Indeed, P is composed

+
-

K M

input

We Wu

output

e e
′ u u

′

Figure 2.2: Presentation of the generalized model

of the weighting filters (We and Wu in the proposed structure) and the model of the system M.
By simplification, we can write that P = M+ We + Wu. The choice of the weighing filters We

and Wu is an important task for the design of H∞ controllers and Section 4.2.2 is dedicated to
the description of the existing methods.

Consider the Linear Time Invariant (LTI) plant P given by:

P :





ẋ(t) = A x(t) + B1 w(t) + B2 u(t),
z(t) = C1 x(t) + D11 w(t) + D12 u(t),
y(t) = C2 x(t) + D21 w(t),

(2.1)

where x ∈ Rn corresponds to the state vector. The matrices A, B1, B2, C1, C2, D11, D12 and
D21 have appropriated dimensions.

Consider K, the dynamic controller is given by:

K :

{
ẋK(t) = AK xK(t) + BK y(t),
u(t) = CK xK(t) + DK y(t),

(2.2)

where xK ∈ Rn corresponds to the state vector of the controller. The matrices AK , BK , CK et
DK have appropriated dimensions.

It is important to notice that the dimension of x(t) matches the one of xK(t). This implies
several implementation problems when dimensions are too important. Then, this major H∞
drawback will be discussed in Chapter 4 when control implementation will be discussed.

Using P and K defined previously, the closed-loop transfer function N linking w(t) and z(t)
is defined by:

N :

{
ẋcl(t) = A xcl(t) + B w(t),
z(t) = C xcl(t) + D w(t),

(2.3)

where xT
cl = [xT xT

K ]T and





A =

(
A + B2DKC2 B2CK

BKC2 AK

)
,

B =

(
B1 + B2DKD21

BKD21

)
,

C = (C1 + D12DKC2 D12CK) ,

D = D11 + D12DKD21.
The H∞ control problem consists in synthesizing a controller K that stabilizes the system

and minimizes the H∞ norm of the closed-loop transfer function N .
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2.2. H∞ synthesis: theoretical aspects

The controller synthesis needs the distinction of two problems: the optimal H∞ problem and
the suboptimal H∞ problem. The optimal problem aims at finding a controller that minimizes
‖N‖∞. This resolution is challenging and is not effectively required; thus, a suboptimal resolution
is generally preferred. Consider a constant γ > 0, the aim of the suboptimal problem is to find
a controller such that ‖N‖∞ < γ.

2.2.2.2 Resolution method based on LMI equations

The optimization problem, obtained for the synthesis of the H∞ controller can be solved
using two different approaches. On the one hand, the first historical resolution method
is based on Riccati’s equations [Doyle et al., 1989]. On the other hand, the resolution
based on Linear Matrix Inequalities (LMI) appeared in the nineties [Scherer et al., 1997],
[Gahinet and Apkarian, 1994]. Thanks to recent advances in Semi-Definite Positive (SDP) pro-
gramming [Vandenberghet and Boyd, 1996], the LMI becomes a very powerful tool appreciated
by the control community due to the interesting possibility to solve many control problems
[Boyd et al., 1994], [Herrmann et al., 2005]. Particularly, this tool gives the possibility to extend
the H∞ synthesis based on LTI models to LPV models. Moreover, the hypothesis required by
the resolution based on the Riccati’s equations are strict and the resolution based on LMI helps
to relax these hypothesis. For example, hypotheses in relation with the rank of particular ma-
trices are required when the resolution is based on Riccati’s method. These different hypotheses
and their utilities are clearly mentioned in [Zin, 2005]. As a conclusion, the synthesized H∞ con-
trollers are commonly obtained with the LMI resolution and the following presents this resolution
method.

Definition 23 Linear matrix inequalities
A Linear Matrix Inequality has the form:

F (l) = F0 +
m∑

i=1

liFi > 0

where l = (l1, ..., lm) ∈ Rm is the vector with m variables and Fi = F T
i ∈ Rn×n (i = 0, ..., m) are

positive-definite symmetric matrices.

Definition 24 Positive-definite matrix
A matrix X is positive-definite if and only if:

∀u ∈ Rn?
, uT Xu > 0.

The resolution is based on the use of the bounded-real lemma [Scherer, 1990] and has to
respect the following hypothesis:

• (A,B2) is stabilizable;

• (C2, A) is detectable.
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This lemma demonstrates that the closed-loop system N is stable and the H∞ norm of N is
smaller than γ if there exists a symmetric matrix P such that:




AT P + PA PB CT

BT P −γI DT

C D −γI


 < 0, P > 0 (2.4)

Based on the closed-loop system (2.3), it is easily outstanding that the first matrix inequal-
ity of (2.4) is not affine in the parameters and the convex optimization algorithm can not
be used. A variable change, proposed in [Scherer et al., 1997], is required to obtain a LMI.
Thus, the bounded-real lemma using the intermediate variables Â, B̂, Ĉ, D̂,X, Y is expressed by
[Scherer et al., 1997]: 







M11 ∗ ∗ ∗
M21 M22 ∗ ∗
M31 M32 −γI ∗
M41 M42 M43 −γI




< 0,

(
X I

I Y

)
> 0,

(2.5)

where ∗ denotes the blocks obtained by symmetry and transpose, and





M11 = AX + XAT + B2Ĉ + (B2Ĉ)T ,

M21 = Â + (A + B2D̂C2)T ,

M22 = AT Y + Y A + B̂C2 + (B̂C2)T ,

M31 = (B1 + B2D̂D21)T ,

M32 = (Y B1 + B̂D21)T ,

M41 = C1X + D12Ĉ,

M42 = C1 + D12D̂C2,

M43 = D11 + D12D̂D21.

(2.6)

After solving the LMI, non singular matrices M and N are defined such that MNT = I −XY .
Then, the parameters of the controller are expressed as functions of the intermediate variables
such that: 




DK = D̂,

CK = (Ĉ −DkC2X)MT ,

BK = N−1(B̂ − Y B2DK),
AK = N−1(Â−NBKC2X − Y B2CKMT−

−Y (A + B2DKC2)X)M−T .

(2.7)

2.2.3 H∞ synthesis for LPV models: the gain scheduling approach

The use of fixed-gain control solutions is not suitable for the systems whose parameters vary
widely. Then, control solutions based on gain scheduling are required. It is an acknowledged tech-
nique and numerous different design notions are referred to this term [Rugh and Shamma, 2000].
Here, two kinds of gain scheduling controllers are considered:

• classic gain scheduling approach,
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• modern gain scheduling approach.

The classic approach aims at defining a number of LTI models to describe the dynamics of the
system; these models are used to synthesize a number of controllers. The control law is obtained
by interpolating the output of these controllers. Different interpolation methods are proposed
in [Theodoulis, 2008] (controller switching, controller blending, ZPK interpolation, state space
matrices interpolation, ...) and the author suggests that controller blending is well-suited for
MIMO use (the computational complexity is minimal and no limitation on the controller order
or structure is detected).

The modern approach aims at using a LPV model to synthesize the controller. Two
different approaches are available in the literature, the LFT formulation [Packard, 1994],
[Apkarian and Gahinet, 1995] which considers the varying dynamics as perturbations, and the
polytopic formulation [Apkarian et al., 1995] which is appropriate when the parameter depen-
dency enters the LPV model in a linear way. The latter formulation is considered in this project,
insofar as the linear dependency hypothesis is respected by the different models studied.

2.2.3.1 Classic gain scheduling approach and H∞ synthesis

The classic gain scheduling technique and more particularly controller blending is presented in
this section. This technique aims at synthesizing an LTI controller for each LTI model which
grids the varying space. Then, the outputs of the adjacent controllers are blended (a weighted
sum of the outputs is done) to provide the control signal to be applied on the system.

Consider for simplicity, an LPV model with two varying parameters ρ1 and ρ2 evolving inside
a fixed operating region such that ρ1 ∈ [ρmin

1 , ρmax
1 ] and ρ2 ∈ [ρmin

2 , ρmax
2 ]. The region is gridded

with m × n points Pi,j with i ∈ [1,m] and j ∈ [1, n]. To each point corresponds a LTI model
Pi,j(ρi

1, ρ
j
2) and a controller Ki,j is synthesized based on the H∞ theory previously presented. At

time t, the varying parameters defined by ρ(t) = [ρ1(t), ρ2(t)] are located inside a square defined
by four points Pi,j , Pi+1,j , Pi,j+1 and Pi+1,j+1 characterized by their respective LTI model and
H∞ controller. Then, the two distances dt

i and dt
j presented in Figure 2.3 which describe the

proximity between the varying parameter and the vertex of the square, are defined by:

dt
i =

ρ1(t)− ρi
1

ρi+1
1 − ρi

1

(2.8)

dt
j =

ρ2(t)− ρj
2

ρj+1
2 − ρj

2

(2.9)

Finally, the control signal u(t) applied on the system at time t is a combination of the
four controller outputs ui,j , ui+1,j , ui,j+1 and ui+1,j+1 of the controllers Ki,j , Ki+1,j , Ki,j+1 and
Ki+1,j+1 such that:

u(t) = (1− dt
i)

[
(1− dt

j) · ui,j + dt
j · ui,j+1

]
+ dt

i

[
(1− dt

j) · ui+1,j + dt
i · ui+1,j+1

]
(2.10)

Nevertheless, numerous LPV models present a particularity insofar as the varying parameters
evolve on a fixed trajectory. For example, considering an LPV model with two varying parameters
ρ1 and ρ2, a constrained function f describes the relation between the two varying parameters
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ρ1

ρ2

ρj
2

ρj+1

2

ρi
1 ρi+1

1

ρ(t)

dt
j

dt
i

Pi,j+1/Ki,j+1

Pi,j/Ki,j Pi+1,j/Ki+1,j

Pi+1,j+1/Ki+1,j+1

Operating region

ρmin
1

ρmax
1

ρmin
2

ρmax
2

Figure 2.3: General controller blending technique

such that ρ2 = f(ρ1) and defines a trajectory T . The latter is gridded such that m points Pi are
defined and m LTI models Pi(ρi

1, ρ
i
2) are distributed on the trajectory. For each LTI model, a

controller Ki is synthesized based on the H∞ theory. At time t, the varying parameters are on
the trajectory between two adjacent points Pi and Pi+1. Then, three distances are calculated: Di

corresponds to the distance between Pi and Pi+1, dt
i corresponds to the distance between Pi and

the parameter ρ(t) and dt
i+1 corresponds to the distance between Pi+1 and the parameter ρ(t).

These different notions are illustrated in Figure 2.4. Finally, the control signal u(t) applied on
the system at time t is a combination of the two controller outputs ui and ui+1 of the controllers
Ki and Ki+1 such that:

u(t) = dt
i+1 · ui + dt

i · ui+1 (2.11)

ρ1

ρ2

P1

P1/K1

Pi

Pi/Ki

Di

ρ(t)

dt

i

Pi+1

Pi+1/Ki+1

dt

i+1

Pm

Pm/Km

T

Figure 2.4: Controller blending technique considering a fixed trajectory
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Commentary The classic gain scheduling solution is interesting insofar as only the
output of the controller is processed and no matrix operation is required
(the operation is done directly on the output signals and the state space
matrices are, in this case, not taken into account). Moreover, controllers
with different structures may be considered because only the outputs are
summed. Thus, the well-known drawback of theH∞ solutions which syn-
thesize high order controllers is not important: the different controllers
are reduced separately. However, this gain scheduling method presents
two main drawbacks. On the one hand, numerous controllers must be
synthesized to follow the dynamics of the system correctly (the varying
space has to be gridded considering a small distance between the different
points). On the other hand, just a few results concerning the stability
of classic gain scheduling solutions are available in the literature.

2.2.3.2 Modern gain scheduling approach and H∞ synthesis

The modern gain scheduling technique is presented in this section. Firstly, the difficulty to
synthesise a controller encountered with the general formulation of an LPV system (cf. equations
(1.11), (1.12) and (1.13)) is introduced. Secondly, the approach based on a polytopic formulation
which helps to move from an infinite formulation to finite formulation is presented.

TheH∞ synthesis for LTI systems has been presented in Section 2.2.2. It is possible to extend
the H∞ synthesis to LPV or q-LPV systems. Let ρ being the set of varying parameters (that
means ρ for a LPV system and ρx, ρ for a q-LPV system), the state-space model of equation
(2.1) is described for LPV or q-LPV models by:

P(ρ) :





ẋ(t) = A(ρ) x(t) + B1(ρ) w(t) + B2(ρ) u(t),
z(t) = C1(ρ) x(t) + D11(ρ) w(t) + D12(ρ) u(t),
y(t) = C2(ρ) x(t) + D21(ρ) w(t),

(2.12)

where x ∈ Rn corresponds to the state vector of the considered system. The matrices A(ρ),
B1(ρ), B2(ρ), C1(ρ), C2(ρ), D11(ρ), D12(ρ) and D21(ρ) depend on ρ and have appropriated
dimensions.

Consider K, the dynamic controller for the LPV system given by:

K(ρ) :

{
ẋK(t) = AK(ρ) xK(t) + BK(ρ) y(t),
u(t) = CK(ρ) xK(t) + DK(ρ) y(t),

(2.13)

where xK ∈ Rn corresponds to the state vector of the controller, the matrices AK(ρ), BK(ρ),
CK(ρ) et DK(ρ) depend on ρ and have appropriated dimensions.

Using P(ρ) and K(ρ) defined previously, the closed-loop transfer function N linking w(t) and
z(t) is defined by:

N (ρ) :

{
ẋcl(t) = A(ρ) xcl(t) +B(ρ) w(t),
z(t) = C(ρ) xcl(t) +D(ρ) w(t),

(2.14)
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where:





A(ρ) =

(
A(ρ) + B2(ρ)DK(ρ)C2(ρ) B2(ρ)CK(ρ)

BK(ρ)C2ρ) AK(ρ)

)
,

B(ρ) =

(
B1(ρ) + B2(ρ)DK(ρ)D21(ρ)

BK(ρ)D21(ρ)

)
,

C(ρ) = (C1(ρ) + D12(ρ)DK(ρ)C2(ρ) D12(ρ)CK(ρ)) ,

D(ρ) = D11(ρ) + D12(ρ)DK(ρ)D21(ρ).
The synthesis for a LPV system is the same as for a LTI system and aims at finding a

controller that minimizes ‖N (ρ)‖∞.

As previously, the bounded-real lemma is used to solve the problem. Then, N (ρ) is stable
and the H∞ norm of N (ρ) is smaller than γ if it exists a symmetric matrix P such that:




AT (ρ)P + PA(ρ) PB(ρ) CT (ρ)
BT (ρ)P −γI DT (ρ)
C(ρ) D(ρ) −γI


 < 0, P > 0 (2.15)

Considering the fact that the first matrix inequality of (2.15) is not affine on the parameters, the
convex optimization cannot be used and the variable change proposed in [Scherer et al., 1997]
enables to come down to a LMI problem. Thus, the bounded-real lemma using the intermediate
variables Â(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ), X and Y is expressed by:





M11(ρ) = A(ρ)X + XAT (ρ) + B2(ρ)Ĉ(ρ) + (B2(ρ)Ĉ(ρ))T ,

M21(ρ) = Â(ρ) + (A(ρ) + B2(ρ)D̂(ρ)C2(ρ))T ,

M22(ρ) = AT (ρ)Y + Y A(ρ) + B̂(ρ)C2(ρ) + (B̂(ρ)C2(ρ))T ,

M31(ρ) = (B1(ρ) + B2(ρ)D̂(ρ)D21(ρ))T ,

M32(ρ) = (Y B1(ρ) + B̂(ρ)D21(ρ))T ,

M41(ρ) = C1(ρ)X + D12(ρ)Ĉ(ρ),
M42(ρ) = C1(ρ) + D12(ρ)D̂(ρ)C2(ρ),
M43(ρ) = D11(ρ) + D12(ρ)D̂(ρ)D21(ρ).

(2.16)

The problem presented in equation (2.16) is an infinite dimension problem. Due to infinite
values of the varying parameter ρ, an infinite number of LMI is obtained. Then, it is necessary
to find a new formulation which permits to obtain a finite dimension problem. A usual method
[Apkarian and Adams, 1998] is to consider the polytopic formulation of the LPV model.

The polytopic formulation of the LPV model requires two particular hypothesis. On the
one hand, the state space matrices of the model (2.12) must have a linear dependency in the
parameter ρ. On the other hand, the parameters of the vector ρ must be bounded such that
ρ(t) ∈ Fρ with Fρ a compact set defined by Fρ =

{
ρ(.) ∈ Rp : ρi ≤ ρi ≤ ρi, i = 1, · · · , p

}
where

ρi and ρi are respectively the minimum and maximum allowable values.

Considering the polytopic LPV or q-LPV models, the system 2.12 can be expressed consid-
ering a polytopic approach by:

P(ρ) =
N∑

i=1

αi(ρ)




A(wi) B1(wi) B2(wi)
C1(wi) D11(wi) B12(wi)
C2(wi) D21(wi) D22(wi)


 (2.17)
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where wi are the vertices of the polytope, N the number of vertices of the polytope and αi ≥ 0

and
N∑

i=1
αi = 1. Then, a polytopic structure of the controller can be obtained such that:

K(ρ) =
N∑

i=1

αi(ρ)

[
AK(wi) BK(wi)
CK(wi) DK(wi)

]
(2.18)

This formulation permits to obtain a finite dimension problem. The equation (2.5) is extended
to LPV models on the polytopic form such that:








M11(wi) ∗ ∗ ∗
M21(wi) M22(wi) ∗ ∗
M31(wi) M32(wi) −γI ∗
M41(wi) M42(wi) M43(wi) −γI




< 0,

(
X I

I Y

)
> 0,

i = 1 · · ·N. (2.19)

The different parameters of the controller are calculated such that the N +1 inequalities from
(2.19) use the following definitions:





M11(wi) = A(wi)X + XAT (wi) + B2(wi)Ĉ(wi) + (B2(wi)Ĉ(wi))T ,

M21(wi) = Â(wi) + (A(wi) + B2(wi)D̂(wi)C2(wi))T ,

M22(wi) = AT (wi)Y + Y A(wi) + B̂(wi)C2(wi) + (B̂(wi)C2(wi))T ,

M31(wi) = (B1(wi) + B2(wi)D̂(wi)D21(wi))T ,

M32(wi) = (Y B1(wi) + B̂(wi)D21(wi))T ,

M41(wi) = C1(wi)X + D12(wi)Ĉ(wi),
M42(wi) = C1(wi) + D12(wi)D̂(wi)C2(wi),
M43(wi) = D11(wi) + D12(wi)D̂(wi)D21(wi).

i = 1 · · ·N. (2.20)

Finally, the N controllers expressed by the matrices at each vertex are defined by:




DK(wi) = D̂(wi),
CK(wi) = (Ĉ(wi)−Dk(wi)C2(wi)X)MT ,

BK(wi) = N−1(B̂(wi)− Y B2(wi)DK(wi)),
AK(wi) = N−1(Â(wi)−NBK(wi)C2(wi)X − Y B2(wi)CK(wi)MT − · · ·

· · · − Y (A + B2DKC2)X)M−T .

(2.21)

Commentary The modern gain scheduling solution based on the polytopic formulation
is a very powerful tool which helps to consider the non-linearities of
the system in the control law. This technique allows to ensure internal
stability of the control solution. Moreover, in this case, it is not required
to grid the varying space but the choice of the polytope is very important.
Its choice is a compromise between the number of vertices, which is
directly linked to the number of H∞ controllers and the way in which
the polytope includes the parameter varying space: a bad polytope may
introduce conservatism or the LMI solver cannot find a solution. The
discussion concerning the definition of the polytope will be detailed in
Chapter 4 through different examples.
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2.2.4 Conclusion

This section presented the key notions which permit to apply, based on LMI, the H∞ theory for
LTI and LPV models . The application of this control theory is detailed in Chapter 4 through
different examples where the NLG steering control is discussed.

Section 2.2 presented the design of robust controllers considering robust stability and robust
performance notions. Indeed, this kind of controller is designed to cope with different operating
points but it cannot always give satisfying results. To solve this problem, adaptive controllers
are required such that their parameters may change with the changing operating conditions.

2.3 Adaptive control: theoretical aspects

2.3.1 Introduction

Since the sixties, there has been an exponential growth in adaptive control publications
[Wang et al., 1995], [Astrom and Wittenmark, 1994] and [Sastry and Bodson, 1989]. A wide
range of industrial and commercial systems need changing or updating feedback controllers K
in order to adapt to the changing parameters of the system S. Then, adaptive control aims at
determining a suitable control law which is satisfactory over a wide range of operating points.

Adaptive control combines a priori knowledge of the system and an acquired on-line knowledge
based on the observations of the system outputs. This knowledge helps to adjust automatically
the parameters of the controller. There are two main approaches which help to design an adaptive
controller:

• indirect adaptive approach,

• direct adaptive approach.

For the indirect solution, based on on-line observations or outputs measures, a model of the
system is built and this model is then used to generate an appropriate controller. For the direct
solution, the controller is built without the use of an intermediate model; the control law is
estimated directly.

The more recent researches consider that the dynamics of the system are unknown and in
this case, fuzzy systems or ANN models are used. An appropriate fuzzy system or an ANN
which uses the inputs, the outputs and/or the states of the system gives the possibility to model
the system. Then, the fuzzy or neural models are updated on-line and the controller is obtained
based on an updated description of the system. Different kinds of controller structures are dealing
with such considerations. For instance, several contributions consider fuzzy adaptive controllers
based on backstepping [Yang et al., 2004], [Chen et al., 2007a] and [Chen et al., 2007b]. These
solutions help to reduce the adapted on-line parameters and thus reduce the computation time of
the algorithm. [Li and Tong, 2003] proposes an hybrid solution using H∞ control to remove the
influence of external disturbances. However, these solutions need a particular class of non-linear
models (expressed in a strict feedback form), which is specific to particular systems. Finally,
[Spooner and Passino, 1996] and [Calise et al., 2001] suggest fuzzy adaptive algorithms with no
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restriction on the system structure. So, the ability of overcoming the uncertainties and time-
varying dynamics of such an algorithm is well-suited for the shimmy phenomenon considered in
Chapter 5.

The following sections present three different control solutions. The first two are based on
state feedback solutions while the last has the advantage to be an output feedback solution. These
different controllers will be used in Chapter 4 to damp the shimmy phenomenon. First, the two
state feedback solutions, based on indirect and direct structures will be compared in Section
2.3.2. Then, considering the fact that the state feedback solutions are witnesses solutions, the
obtained loss of performances with the output feedback solution presented in Section 2.3.3 is
studied.

2.3.2 State feedback control

The considered model, in the frame of state feedback indirect and direct control theory is ex-
pressed by: {

ẋ(t) = f(x) + g(x)u,

y(t) = h(x),
(2.22)

where x = [x1, x2, ..., xn]T ∈ Rn, u ∈ R and y ∈ R are respectively the system states, input and
output; f(x), g(x) and h(x) are smooth functions describing the dynamics of the system.

The common approach used with such model is the feedback linearisation
([Sastry and Bodson, 1989]) which aims at transforming a non-linear model into an equivalent
linear one through a change of variables and the selection of a suitable control input. The
non-linear model is converted such that the new states are the output y and its first derivatives.
Thus, the concept of relative degree is used. For linear SISO model, the relative degree corre-
sponds to the difference between the number of poles and zeros. For the considered non-linear
model, “the model has relative degree r” means that the control input appears explicitly for the
first time in the rth derivative of the output [Sonntag, 1998].

If the system has the relative degree of r (r ≤ n), the first r − 1 derivatives of the output y

are independent of the input and its rth derivative can be expressed by:

y(r) = a(x) + b(x)u (2.23)

where a(x) = Lr
fh(x) and b(x) = LgL

r−1
f h(x) 6= 0 such that Lfh(x) =

dh(x)
dx

f(x) is the Lie

derivative of the function h(x) with respect to f(x) and Lgh(x) =
dh(x)

dx
g(x) is the Lie derivative

of the function h(x) with respect to g(x) [Sonntag, 1998].
For the particular case of the shimmy phenomenon, it could be seen in Section 3.3.3 that

equation (2.23) can be simplified and written with a constant value b(x) = B such that:

y(r) = a(x) + Bu (2.24)

2.3.2.1 Indirect fuzzy adaptive control

The block diagram of the indirect fuzzy adaptive controller, initially proposed in
[Spooner and Passino, 1996] is presented in Figure 2.5.
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Figure 2.5: Indirect fuzzy adaptive control scheme

The plant is represented by equation (2.24). In this strategy, the states x of the system are
used to estimate the dynamics â(x) through a fuzzy system in which the outputs of the rules θa

is adapted using an update law. The control signal u is composed of the certainty equivalence
control term uce based on the estimated system dynamics â(x) and the so called “sliding mode”
term usi [Khalil, 2002]. The latter helps to overcome the estimation error of the fuzzy system.

The certainty equivalence control term is used to estimate the feedback linearisation control
term ; it is defined such that the output of the system follows the reference ym and such that
the error e0 = ym − y decreases exponentially:

uce =
1
B

(−â(x, θa) + ν) (2.25)

where ν(t) := y
(r)
m + ηes + es and es := ės − e

(r)
o . The tracking error es is defined as es := kT e

with e := [e0 ė0 . . . e
(r−1)
0 ], k := [k0 . . . kr−2 1].

The elements of k are chosen such that L(s) := sr−1 + kr−2s
r−2 + . . . + k1s + k0 is Hurwitz.

In this indirect fuzzy adaptive algorithm, a(x) is an unknown non-linear function which must
be estimated to calculate the feedback linearisation control law. In this situation, the fuzzy
system helps to estimate this unknown function based on the following equation:

â(x, θa) = θT
a ςa (2.26)

where θT
a :=

[
θa1 . . . θap

]
and ςT

a :=
[
µa1 . . . µap

]
/ [

∑p
i=1 µai ]. Moreover, the unknown function

a(x) can be formulated as follows:

a(x) = θ∗Ta ςa + δa(x) (2.27)

where δa(x) is the optimal approximation error of a(x) by the fuzzy system and θ∗a is the best
value of the parameter θa:

θ∗a := arg min
θa

[
sup

x

∣∣θT
a ςa − a(x)

∣∣
]

(2.28)

It is thus possible to prove that the fuzzy system can approximate a smooth non-linear function
with arbitrary small error if the number of fuzzy rules is large enough [Kosko, 1994]. The
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parameter error vector θ̃a(t) represents the difference between the current estimated parameter
and the best value of this parameter and is defined by:

θ̃a(t) = θa(t)− θ∗a. (2.29)

The estimation of the function â(x, θa) in equation (4.3) needs to be updated in order to follow
the system dynamics and the variations induced by external perturbations. Then, the parameter
θa of the fuzzy system is updated such that:

θ̇a = −Q−1
a ςaes (2.30)

with Qa ∈ Rp×p a square positive semi-definite matrix which helps to vary the adaptation speed
of the fuzzy system. The sliding mode control term usi is chosen to ensure the stability of the
control law and is expressed by:

usi =
δa

B
sign(es) (2.31)

The constant δa ∈ R is defined such that the estimation error δa(x) is bounded:

|δa(x)| ≤ δa (2.32)

In equation (2.32), δa represents a known bound of the error estimation related to the fuzzy
system. Since the fuzzy system is an universal approximator, it is considered that δa(x) remains
arbitrarily small, if an appropriate fuzzy system with an arbitrarily large number of rules is
chosen. Finally, |δa(x)| can be bounded by δa and this term is used in this control law to
counteract the modelling error between the real non-linear function a(x) and its estimate â(x, θa).

Considering the context of our project, aeronautical constraints are very strict and it is
fundamental to ensure that the control solution is stable. The stability proof of the indirect
state feedback controller can be found in [Spooner and Passino, 1996] and in Appendix B . The
main properties of an indirect fuzzy adaptive controller are then presented in the following
theorem.

Theorem 1 Stability and tracking error results for the state feedback indirect fuzzy adaptive
control solution:
Considering the system defined in (2.22), the control signals defined in (2.25), (2.31) and as-
suming the following:

• A1: the error estimation due to the fuzzy system is bounded (2.32).

It can be concluded that:

• C1: the plant output and its derivatives up to (r-1) order are bounded;

• C2: the control signal is bounded;

• C3: the output error e0 will converge to zero.
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û(x, θu) = θT
u ςu(x)

Update law

θ̇u = Q−1
u

ςues

Plant

y(r) = a(x) + Bu
L(s)

θu

ςu(x)

û
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Figure 2.6: Direct fuzzy adaptive control scheme

2.3.2.2 Direct fuzzy adaptive control

The block diagram of the direct fuzzy adaptive controller, initially proposed in
[Spooner and Passino, 1996] is presented in Figure 2.6.

In this strategy, there is no need to estimate the dynamics of the plant; the fuzzy system,
adapted with an update law, is used to estimate the control signal û directly. As for the indirect
solution, a sliding mode signal usd helps to overcome the estimation error of the fuzzy system.
The control signal u is based on the estimated certainty equivalence control term û and the
sliding mode term usd such that:

u = û + usd (2.33)

On the assumption that function a(x) and constant B, describing the system dynamics are
unknown, the ideal feedback linear control law cannot be implemented. Instead, this control
term is approximated by a universal approximator, here a fuzzy system, of the following form:

û(x, θu) = θT
u ςu (2.34)

Moreover, the unknown function u(x) can be formulated as follows:

u(x) = θ∗Tu ςu + δu(x) (2.35)

where δu(x) is the optimal approximation error of u(x) by the fuzzy system and θ∗u is the best
value of the parameter θu:

θ∗u := arg min
θu

[
sup

x

∣∣θT
u ςu − u(x)

∣∣
]

(2.36)

The parameter error vector θ̃u(t) represents the difference between the current estimated
parameter and the best value of this parameter and is defined by:

θ̃u(t) = θu(t)− θ∗u (2.37)

The estimation of the function û needs to be updated to take account of the possible changes
in the system behavior due to time varying parameters. Then, the following fuzzy system update
law is chosen:

θ̇u = Q−1
u ςues (2.38)

with Qu ∈ Rp×p a square positive semi-definite matrix.
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The sliding mode control term which helps to overcome the approximation error of the fuzzy
system and ensures the stability of the control loop, is expressed as:

usd = δusign(es) (2.39)

The constant δu ∈ R is defined such that:

|δu(x)| ≤ δu (2.40)

It represents a known bound of the error estimation due to the fuzzy system.
The main properties of the direct fuzzy adaptive controller are presented in the following

theorem and the stability proof can be found in [Spooner and Passino, 1996] and in Appendix B
.

Theorem 2 Stability and tracking error results for the state feedback direct fuzzy adaptive control
solution:
Considering the system defined in (2.22), the control signal defined in (2.33), (2.34), (2.39) and
assuming the following:

• A1: the error estimation due to the fuzzy system is bounded, so |δu(x)| ≤ δu.

It can be concluded that:

• C1: the plant output and its derivatives up to (r-1) order are bounded;

• C2: the control signal is bounded;

• C3: the output error e0 will converge to zero.

2.3.3 Output feedback control

The main drawback of state feedback controllers is the need to feedback all the states of the
system, compared to output controllers, which only require the knowledge of the output. Then,
this section proposes a fuzzy adaptive control solution which will be used to damp the shimmy
oscillations in Section 4.3.4, based exclusively on the output measurements.

The block diagram of the output feedback control solution, initially proposed in
[Calise et al., 2001] is presented in Figure 2.7. It can be shown that the plant is controlled
based on an output feedback control signal which is produce by the use of the invert approxima-
tion of the plant dynamic. This latter requires as input the signal v and the system output y.
v is obtained with the fuzzy approximation and its update law, with a linear compensator that
produces vdc and with the r derivative of the reference.

The considered model in the frame of output feedback control solutions is the non-linear
model presented in equation (1.16). Then, the objective of the output feedback control solution
is to design a feedback control law to drive the system output y tracking a reference output ym.

Let ĥ(y, u) be the best available approximation of the following function

y(r) = hr(x, u). (2.41)
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θ̇ = −F [ỹadξf + λmθ]

dr

dtr

Ndc(s)

Ddc(s)

Nad(s)

Ddc(s)

T−1(s)

TDL

TDL

ym ỹ
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Figure 2.7: Fuzzy adaptive output feedback control diagram

Suppose that ĥ(y, u) is invertible according to u. The feedback linearisation control law is:

u = ĥ−1
r (y, v) (2.42)

where v is commonly referred to a pseudo control. Substitute equation (2.42) into equation
(2.41), it is possible to write:

y(r) = v + ∆ (2.43)

Where ∆ is the approximation error:

∆(x, v) = hr(x, ĥ−1
r (y, v))− ĥr(y, ĥ−1

r (y, v)) (2.44)

The pseudo control signal is chosen as [Calise et al., 2001]:

v = y(r)
m + vdc − vad (2.45)

where y
(r)
m is the rth derivative of the input signal, vdc is the output of a linear compensator and

vad is the adaptive control signal. Let ỹ = ym − y be the output error, then the error dynamics
of the closed-loop system can be written as

ỹ(r) = −vdc + vad −∆ (2.46)

The adaptive term vad is designed to eliminate the approximation error δ, and the linear control
term vdc is designed such that the output error dynamics meets the performance requirement.
The linear compensator presented in Figure 2.8 is defined as:

vdc(s) =
Ndc(s)
Ddc(s)

ỹ(s) (2.47)

ỹad(s) =
Nad(s)
Ddc(s)

ỹ(s) (2.48)
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Figure 2.8: Linear compensator block diagram

where the polynomial Ddc(s) is chosen such that all its roots are located in the open left half
plane of the complex s-plane. The input-output relationship of the system shown in Figure 2.8
is:

ỹad(s) = G(s)(vad −∆)(s) (2.49)

where G(s) is the closed-loop transfer function

G(s) =
Nad(s)

srDdc(s) + Ndc(s)
(2.50)

Because G(s) must be stable, the Routh-Hurwitz stability necessary criterion implies that the
degree of the polynomials Ndc(s) and Ddc(s) must satisfy:

deg(Ddc(s)) ≥ deg(Ndc(s)) ≥ r − 1 (2.51)

The adaptive term vad is implemented by a fuzzy system with tunable parameters in the conclu-
sions. The input vector η of the fuzzy system consists of time delays (TDL) of the pseudo input
v(t) and the system output y(t) as following:

η = [v(t), v(t− d), . . . , v(t− (n1 − r − 1)d), y(t), y(t− d), . . . , y(t− (n1 − 1)d)]T (2.52)

where n1 is a constant satisfying n1 ≥ n with n the dimension of the state vector x. The fuzzy
system corresponds to the one presented in Section 1.3.4 and consists of fuzzy rules of the form:

If (η1 is F̃i1 and · · ·and ηm is F̃im) Then vad = θi (2.53)

where m is the number of input, F̃ij is the fuzzy set of input variable j used in rule i (i =
1, · · · , K). The output of the fuzzy system can be expressed as:

vad = θT ξ(η) (2.54)

where ξ(η) is the true degree of fuzzy rule’s condition; θ consists of the parameters of the fuzzy
rule’s conclusion:

θ = [θ1, θ2, . . . , θK ]T (2.55)

ξ(η) = [ξ1(η), ξ2(η), . . . , ξK(η)]T (2.56)
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ξi(η) =

m∏
j=1

µij(ηj)

K∑
i=1

m∏
j=1

µij(ηj)
(2.57)

Since the function ∆ is approximated by a fuzzy system with limited number of rules, an ap-
proximation error exists in general cases. Let ξi(η) be the structure error, the function ∆ can be
expressed as follow:

∆ = θ∗T ξ(η) + ε(η) (2.58)

Assume that the structure error is bounded, meaning that there is a constant ε∗ such that:

|ε(η)| ≤ ε∗ (2.59)

Substituting equations (2.54) and (2.58) into equation (2.49), ỹad(s) becomes:

ỹad(s) = G(s)(θ̃T ξ − ε)(s) (2.60)

where θ̃ = θ − θ∗ represents the difference between the current estimated parameter and the
best value of this parameter. The filtered error ỹad(s) is used in the adaptive rule as it will be
seen latter in this section. For the adaptation rule to be realizable, i.e. dependent on available
data only, the transfer function G(s) must be strictly positive real (SPR). However, the relative
degree of G(s) is at least r. When the relative degree of G(s) is one, it can be made SPR by a
proper design of Nad(s). If r > 1, G(s) cannot be SPR. To achieve SPR in the r > 1 case, a low
pass filter T−1(s) is introduced into equation (2.60):

ỹad(s) = G(s)T (s)(θ̃T ξf + δ − εf )(s) (2.61)

Where ξf and εf are the signals ξ and ε, respectively, after being filtered through T−1(s), and δ

is the mismatch term given by

δ(s) = T−1(s)(θ̃T ξ)− θ̃T T
ξf (2.62)

that can be bounded as
‖δ‖ ≤ c

∥∥∥W̃
∥∥∥ (2.63)

The polynomials T (s) and Nad(s) are Hurwitz, they are chosen such that Ḡ(s) = G(s)T (s) is
strictly positive real (SPR). Assume that Ḡ(s) can be expressed as:

Ḡ(s) =
Nad(s)T (s)

srDdc(s) + Ndc(s)
=

b1s
p−1 + b2s

p−2 + ... + bp

sp + a1sp−1 + ... + ap
(2.64)

where p = q + r. A simple way to design T (s) and Nad(s) ensuring the SPR property of Ḡ(s)
is the zero placement approach. Since the polynomials Ddc(s) and Ndc(s) are chosen before,
according to equation (2.64) the poles of Ḡ(s) are known. The polynomials T (s) and Nad(s) are
freely chosen such that the zeros of Ḡ(s) are placed interlacing with its poles to ensure that the
Bode plot of Ḡ(s) is in the range ±90. The adaptive rule is defined as:

θ̇ = −F [ỹadξf + λmθ] (2.65)

where F is a positive definite matrix and m is a positive constant.
The properties of the output feedback adaptive controller are presented in the following

theorem and the stability proof can be found in [Calise et al., 2001].
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Theorem 3 Stability and tracking error results for the output feedback control solution:
Considering the system defined in equation (1.16), the control signal defined in equation (2.42)
and assuming the following:

• A1: the only measurement available for feedback is the output y(t);

• A2: the reference output ym(t) and its derivatives up to the rth order are measurable and
bounded;

• A3: the transfer function between the output error ỹ and the filtered output error ỹad is
stable.

It can be concluded that:

• C1: the described output feedback adaptive control system is stable;

• C2: the signal ỹad and θ̃ are uniform ultimate bounded;

• C3: ỹ is bounded.

2.3.4 Conclusion

This section presented three control laws based on fuzzy adaptive control. While the two first
proposed adaptive laws of Section 2.3.2 require the measure of all the states of the system, the
last algorithm detailed in Section 2.3.3 has the advantage to exclusively takes account of the
outputs of the system to built the control signal. These different control solutions will be used in
Chapter 4, where it is shown that fuzzy adaptive control solutions give the possibility to damp
the shimmy phenomenon.

2.4 Model predictive control (MPC): theoretical aspects

2.4.1 Introduction

In this section, a short introduction presenting the historical background of model predictive
control (MPC) is done. Then, the general principle of MPC, divided in successive actions is
described. Finally, the limits of non-linear predictive control are introduced and solutions to
cope with are proposed.

Nowadays, the success of MPC is undeniable. Two main arguments may explain this success.
On the one hand, the simplicity of the control strategy is an important advantage. The different
steps that constitute an MPC are similar to a human decision taking. When a human takes a
decision, he observes his environment to define an action and its effect. Then, by inverting this
purpose, he is able to find the action required to obtain the desired behaviour. On the other
hand, this control strategy gives the possibility to handle constraints and non-linearities in a
rigorous way. Despite important calculation efforts, the non-linearities of the system are taken
into account insofar as the description of the system evolution is used to obtain the optimal
control input.
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2.4.2 General principle of model predictive control

2.4.2.1 Steps of predictive control

The general principle of MPC is the resolution, at each sample-time, of a finite horizon open-loop
optimal control problem to compute the control input. The optimization step helps to obtain
an optimal control input sequence and the first value of this sequence is applied to the system.
Then, the principle of MPC is based on five steps which are performed successively at each
sample time:

• prediction of the system evolution,

• definition of the trajectory,

• definition of the cost criterion,

• minimization of the cost criterion,

• application of the first term of the optimal solution.

Prediction of the system evolution

The first step consists in predicting the system output using the knowledge of the system dynam-
ics response. This knowledge helps to predict the future evolution of the system up to a limited
prediction horizon Np. The prediction may be done by using a linear or non-linear model; a
black, grey or white box model.

Definition of the reference

The reference trajectory corresponds to the trajectory that must be followed by the system. Two
solutions help to define this reference. On the one hand, if the trajectory is a priori defined, it is
directly used as the reference trajectory. On the other hand, if only the final point is known, a
smooth reference trajectory is built based on a reference model.

Definition of the cost criterion

The cost criterion is commonly composed of two terms. The first corresponds to the sum of the
quadratic errors between the reference trajectory and the predicted outputs of the model. The
second describes the limitation of the control signal. In the case of a SISO system, at time k,
the cost criterion J(k) is expressed by:

J(k) = Q

Np∑

n=1

(ŷ(k + n)− yref (k + n))2 + R

Nc∑

n=0

u(k + n)2 (2.66)

with Q and R the weighting factors on the output error and the control input, ŷ the predicted
output, yref the reference trajectory, u the control signal, Np the prediction horizon and Nc the
control horizon. Nc is defined such that Nc ≤ Np and beyond Nc, u(k + n) is constant and is
defined by u(k + n) = u(k + Nc).
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Minimization of the cost criterion

The minimization of the criterion J(k) gives the optimal control input sequence. Without con-
straint and considering a prediction based on a linear model, it is possible to solve the optimiza-
tion problem analytically by using a QR decomposition [Maciejowski, 2000]. For the general
case, the minimization is described by:

min
U

J(k)

respecting C
(2.67)

with the constraints C defined by:

C :





umin ≤ u(k + n) ≤ umax ∀k ∈ [1, Nc]
ŷmin ≤ ŷ(k + n) ≤ ŷmax ∀k ∈ [1, Np]
x̂min ≤ x̂(k + n) ≤ x̂max ∀k ∈ [1, Np]

(2.68)

such that x̂ corresponds to the estimated state of the system.

Application of the first term of the optimal solution

The first term of the optimal control sequence is applied on the system.
Finally the different signals which are involved in the frame of MPC are detailed in Figure

2.9.

Time (s)
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reference trajectory
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(k
)

(k
+

n
)

Figure 2.9: Definition of the signals used for MPC

2.4.2.2 Tuning of MPC parameters

The tuning of the parameters is an important task for the development of the control solution.
Similarly to other control solutions, just few methods in the literature help to find the most

43



Chapter 2. Which control law for which model?

appropriate parameters. For example, [Han et al., 2006] and [Kawai et al., 2007] propose an
automatic tuning for MPC. The aim of this section is to present the parameters that could be
tuned and their influence on the closed loop behaviour.

The main parameters that are used for the tuning of the control solution are:

• Np, the prediction horizon. This tuning parameter represents the number of future con-
trolled variables involved in the performance objective. A large value of Np leads to the
improvement of the stability and the robustness of the closed-loop, but sacrifices the ra-
pidity. Np is chosen in relation to the response time of the system such that sufficient
information is included in the cost criteria and no excessive and useless information in-
crease the calculation time.

• Nc, the control horizon. This tuning parameter determines the number of control actions
that are calculated in the optimization step. A large value of Nc induces excessive control
action while a small value of Nc smooths the control action. Moreover, computational
effort is reduced when the value of the control horizon is small.

• R, the weighting on the control input. This tuning parameter helps to scale the acceptable
error. If R is small, the control signal will be very important and instability of the control
law may appear. If R is important, only small control signals will be obtained.

• Q, the weighting on the output error. This tuning parameter has the opposite effect than
the weighting on the control. For the tuning of the control solution, it seems interesting to
fix one of the two weights and let the other vaies.

• C , the constraint that the control law has to respect. Three main constraints are available.
The constraint on the output estimation (ŷmin and ŷmax), the constraint on the input (umin

and umax) and the constraint on the estimated states (x̂min and x̂max). For instance, in
the case of trajectory tracking, the constraint on the input permits to limit the maximum
value of the wheel angle and to prevent from mechanical damages of the steering column.
Moreover, in the case of A/C applications, it could be possible to limit the nose landing
gear slip angle by including constraints on the estimated states of the system.

• Te, the sample time. The sample time limits the calculation time. For calculation aspects,
it is preferable to work with a long sample time. However, this choice has to respect the
Shannon theorem.

Chapter 5, which is dedicated to the application of the MPC for trajectory tracking underlines
the importance of the different parameters. A trial error method has been used to find the most
acceptable values for the proposed parameters. Particularly, it will be seen that the value of the
weighting on the input R is very important.

2.4.3 NMPC limitations and solutions to cope with

When the system is subjected to strong non-linearities, it is well-known that non-linear control
offers distinct advantages. In these cases, the use of Non-linear Model Predictive Control (NMPC)
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is significant enough. Currently, this control strategy has been applied for a lot of applications
([Santos et al., 2001], [Qin and Badgwell, 2000], ...) but many drawbacks make it difficult to use:

• a detailed description of the system is needed to apply the NMPC and the identification
of non-linear models is still difficult to obtain;

• the algorithm which helps to determine the optimal control sequence is very complex for the
case of non-linear systems and despite significant computation infrastructure, the solution
can be computationally intensive for on-line implementation [Borrelli et al., 2005];

• stability results are difficult to obtain, an infinite prediction horizon or a terminal state
constraint are required [Qin and Badgwell, 2003].

Considering the limits of the NMPC, three main solutions help to integrate a non-linear
behaviour of the controller:

• MPC based on LTV models,

• successive linearisation of non-linear models [Colin et al., 2007],

• approximation of non-linear systems by PWA models [Pena et al., 2005],
[Schutter and Boom, 2004].

2.4.3.1 MPC based on LTV model

This section presents the possibility to introduce a non-linear behaviour of the MPC strategy by
using an LTV model for the prediction. It is obvious that the proposed strategy may be easily
adapted for LPV or q-LPV models. Considering the LTV model presented in equation (1.11),
its discretisation with the assumption that the matrix D = 0, is expressed with the realization
(Ad, Bd, Cd) by: {

x(k + 1) = Ad(k) x(k) + Bd(k) u(k),
y(k) = Cd(k) x(k),

(2.69)

At each sample time k, the predictions are expressed by the use of the state space matrices. In
other words, the estimation of the outputs Ŷ (k) = [ŷ(k +1), ŷ(k +2), · · · , ŷ(k +Np)] is obtained
with the three matrices Ad(k), Bd(k) and Cd(k). Then, the vector of output estimations is
described by the use of x(k) and the vector of inputs U = [u(k), u(k + 1), · · · , u(k + Np − 1)]:

Ŷ (k) = Ψ(k)x(k) + Θ(k)U (2.70)

such that:

Ψ(k) =




Cd(k)Ad(k)
Cd(k)Ad(k)2

...
Cd(k)Ad(k)Np




(2.71)
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and

Θ(k) =




Cd(k)Bd(k) 0 . . . 0

Cd(k)Ad(k)Bd(k) Cd(k)Bd(k) 0
...

... Cd(k)Ad(k)Bd(k)
. . .

...
...

...
. . .

...
Cd(k)Ad(k)Nu−1Bd(k) · · · · · · Cd(k)Bd(k)

...
...

...
...

Cd(k)Ad(k)Np−1Bd(k) · · · · · · Cd(k)
Np−Nu∑

i=0
Ad(k)iBd(k)




(2.72)

Then, the cost criterion can be written as:

J(k) = (Ŷ (k)− Yref )T Q(Ŷ (k)− Yref ) + UT RU (2.73)

with Yref = [yref (k + 1), yref (k + 2), · · · , yref (k + Np)].
Thus, the minimization problem becomes:

min
U

UT (Θ(k)T ST
Q + ST

R)(SQΘ(k) + SR)U + (x(k)T Ψ(k)T − Y T
ref )Q(Ψ(k)x(k)− Yref )

respecting C
(2.74)

such that ST
QSQ = Q and ST

RSR = R.

2.4.3.2 MPC based on successive linearisation

Considering a non-linear model of the system described by the equation (1.16). This model
is difficult to use in the frame of MPC. Then, the simplest way to deal with it, is to perform
successive linearisation around an operating point. The local linearisation helps to obtain a linear
formulation which can be solved by the use of Quadratic Programming (QP) techniques.

The non-linear model presented in equation (1.16) or the ANN described in Section 1.3.3
which are used for the prediction of the system evolution can be both described by their output
such that:

ŷ(k + 1) = f(y(k), u(k)) (2.75)

Around an operating point O defined by O = (y0, u0), the output is linearised such that

ŷ(k + 1) = a0(k) + b0(k)y(k) + c0(k)u(k) (2.76)

with: 



a0(k) = f |0 −
∂f

∂y(k)

∣∣∣∣
0

y0 − ∂f

∂u(k)

∣∣∣∣
0

u0

b0(k) =
∂f

∂y(k)

∣∣∣∣
0

c0(k) =
∂f

∂u(k)

∣∣∣∣
0

(2.77)

At each sample time k, the predictions are expressed by the use of the state space matrices. In
other words, the estimation of the outputs Ŷ (k) = [ŷ(k+1), ŷ(k+2), · · · , ŷ(k+Np)] are obtained
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with the three expressions a0(k), b0(k) and c0(k). Then, the vector of output estimations is
described by the use of the y(k) and the vector of inputs U = [u(k), u(k +1), · · · , u(k +Np−1)]:

Ŷ (k) = Ψ(k) + Γ(k)y(k) + Θ(k)U (2.78)

such that:

Ψ(k) =




a0(k)
a0(k) + a0(k)b0(k)

...

a0(k) +
Np−1∑
i=0

b0(k)j




(2.79)

Γ(k) =




b0(k)
b0(k)2

...
b0(k)Np




(2.80)

and

Θ(k) =




c0(k) 0 . 0
b0(k)c0(k) c0(k) 0 .

...
. . . . . . 0

...
. . . . . . 0

b0(k)Np−1 · · · b0(k)c0(k) c0(k)




(2.81)

Similarly to equation (2.73), the cost criterion can be written as:

J(k) = (Ŷ (k)− Yref )T Q(Ŷ (k)− Yref ) + UT RU (2.82)

Thus, the minimisation problem becomes:

min
U

UT (Θ(k)T ST
Q + ST

R)(SQΘ(k) + SR)U + · · ·

(Ψ(k)T + y(k)T Γ(k)T − Y T
ref )Q(Ψ(k) + Γ(k)y(k)− Yref )

respecting C

(2.83)

such that ST
QSQ = Q and ST

RSR = R.

2.4.3.3 MPC based on PWA model

The main drawback of the two previous MPC solutions (MPC based on LTV model and MPC
based on successive linearisation) is the fact that the prediction uses a linear modelling of the
system. The non-linear characteristic of the control law is obtained by changing from one linear
modelling to another at each sample time. Considering a long prediction horizon or a non-linear
system that is not particularly smooth, it could be required to take account of the non-linear
evolution of the system during the prediction step. For this purpose, MPC based on PWA
model is an interesting compromise. The prediction is based on a set of linear model and the
optimization step is still performed by the use of QP programming coupling with a particular
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strategy which considers the possible evolution of the model in the polyhedral partition of the
state-input space.

Considering the PWA model description presented in Section 1.3.2.4, the estimation of the
outputs Ŷ (k) = [ŷ(k + 1), ŷ(k + 2), · · · , ŷ(k + Np)] can be expressed by several solutions. For
example, the states of the system at time k is known but at time k +1, different expressions can
appear according to the possible models of the polyhedral partition. Then, the output can be
expressed as:

ŷ(k + 1) = Cj x(k + 1) = CjAi x(k) + CjBi u(k) + Cjfi

or
ŷ(k + 1) = Cl x(k + 1) = ClAi x(k) + ClBi u(k) + Clfi

(2.84)

The sequence of subsystems Ij = [Ik, Ik+1, ..., Ik+Np−1] which is obtained with successive models
from the polyhedral regions [Xk,Xk+1, ...,Xk+Np−1] is considered. Then, the estimation of the
outputs ŶIj (k) which corresponds to a particular sequence of subsystems is defined by:

ŶIj (k) = ΨIj + ΓIjx(k) + ΘIjU (2.85)

with

ΨIj =




Ck+1fk

Ck+2Ak+1fk + Ck+2fk+1

...
Ck+NpAk+Np−1 · · ·Ak+1fk + · · ·+ Ck+Npfk+Np−1




(2.86)

ΓIj =




Ck+1Ak

Ck+2Ak+1Ak

...
Ck+NpAk+Np−1 · · ·Ak




(2.87)

ΘIj =




Ck+1Bk 0 . . . 0

Ck+2Ak+1Bk Ck+2Bk+1 0
...

... Ck+3Ak+2Bk+1
. . .

...
...

...
. . .

...
Ck+NuAk+Nu−1 · · ·Ak+1Bk · · · · · · Ck+NuBk+Nu−1

...
...

...
...

Ck+NpAk+Np−1 · · ·Ak+1Bk · · · · · · ΘIj (Np, Nu)




(2.88)

with

ΘIj (Np, Nu) = Ck+NpBk+Nu−1 + Ck+Np

Np−Nu∑

i=1

i∏

j=1

Ak+Np−jBk+Nu−1 (2.89)

and Ak, Bk, Ck and fk which corresponds respectively to the matrices of the PWA model in the
polyhedral region Xk.

I corresponds to the set of all the sequences of subsystems such that Ŷ (k)I = ΨI +ΓIx(k)+
ΘIU represents all the possible predictions. Then, the MPC based on PWA model is based on

48



2.4. Model predictive control (MPC): theoretical aspects

the following minimization problem:

min
I,U

UT (ΘT
I ST

Q + ST
R)(SQΘI + SR)U + · · ·

(ΨT
I + y(k)T ΓT

I − Y T
ref )Q(ΨI + ΓIy(k)− Yref )

respecting C

(2.90)

The application of MPC based on PWA model requires to solve a QP which is able to take
account of the different sequences of subsystems. For this purpose, [Pena et al., 2005] propose
to use a Branch and Bound (B&B) algorithm to obtain the optimal input sequence. The B&B
method is a structured search technique and a representation of this method is shown in Figure
2.10 such that X j/k

i corresponds to a particular element of the B&B structure (i is the region of the

y(k + 1) y(k + 2) y(k + 3) y(k + Np − 1) y(k + Np)
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Figure 2.10: Branch and Bound (B&B) algorithm

polyhedral partition , j is the number of the level and k is the number of the particular sequence
in the level j). However, it is possible to reduce the number of combinations. Considering the
example presented in Figure 1.3, when the sample time is sufficiently low, it is not possible to
go directly from the region X1 directly to the region X3. This simplification helps to reduce
the time required for the optimization step. Another possibilities consist in using an hybrid
automate which gives the possibility to have a finite number of transition or on transforming the
system into an Mixed Logical Dynamical (MLD) system where mixed optimisation algorithms
are available [Bemporad and Morari, 1999].

2.4.4 Conclusion

This section has presented some theoretical points concerning MPC. After a short introduction,
the different steps which are involved in this control strategy have been detailed. Then, the
main drawback of NMPC has been introduced and some solutions which help to cope with have
been proposed. Indeed, because of the optimisation algorithm required at each sample time,
non-linear and fast systems are difficult to manipulate. As shown in Section 2.4.3, solutions
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based on LTV and PWA models or successive linearisations give the possibility to integrate non-
linear behaviour of MPC algorithm. As it could be read in Section 3.2.3.4, MPC is particularly
adapted for path following applications. In Chapter 5, some control solutions based on MPC are
implemented and tested on an instrumented test vehicle.

2.5 Conclusion

This chapter gave theoretical explanations concerning different control strategies which will be
used in Chapters 4 and 5:

• H∞ control theory and particularly the gain scheduling solution based on a polytopic
approach,

• fuzzy adaptive control considering state feedback and output feedback control solutions,

• model predictive control (MPC).

Section 2.2 presented the theoretical aspects of H∞ control solution. First, the equations
based on LTI models have been presented and a particular attention is focused on the LMI for-
mulation [Scherer et al., 1997]. Then, due to the limitations of linear models and the possibility
to describe non-linear behaviours with LPV models, H∞ control solution has been extended for
LPV models. Thus, classic gain scheduling [Theodoulis, 2008] and modern gain scheduling based
on polytopic approaches [Poussot-Vassal et al., 2008] have been introduced.

Section 2.3 is dedicated to adaptive control solutions. These latter consider an on-line knowl-
edge based on the observations of the system which helps to adjust automatically the parameters
of the controller. Particularly, the three control solutions proposed here are based on a fuzzy
approximator that permits to adjust the controller in real-time. On the one hand, two state
feedback control solutions based on indirect and direct structures are proposed in Section 2.3.2.
While the first solution uses the fuzzy approximator to identify the dynamics of the system which
will subsequently be used to adapt the control law, the second directly adjust the control signal.
On the other hand, an output feedback solution is detailed in Section 2.3.3. This last control
solution just requires a limited number of measures which seems more realistic considering aero-
nautical constraints. Indeed, this solution considers the delayed outputs and inputs of the system
to adjust the control signal by the use of a fuzzy system [Calise et al., 2001].

Section 2.4 deals with model predictive control. Firstly, the different steps required for the
obtaining of the control signal are detailed. It is important to notice that MPC requires a real-
time optimisation which is the major constraint of this solution. Secondly, due to the difficulties
encountered when the optimisation is performed based on a non-linear model, solutions which
permit to cope with are proposed. Indeed, LTV models, successive linearisations and PWA
models are different propositions which give the possibility to confront the difficulties engendered
by the optimization step when non-linear models are considered.

The application of these different control strategies can be found in the following chapters.
Firstly, robust H∞ control solutions are used in Section 4.2 which is dedicated to the control of
the nose landing gear. Secondly, the state feedback and output feedback fuzzy adaptive control
solutions are applied to damp the shimmy phenomenon in Section 4.3. Thirdly, the automatic
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guidance algorithms, presented in Section 5.6 and validated on real tests, illustrate the advantages
of MPC.

Finally, the following chapter presents the context in which different control laws will be
implemented. Thus, the low level loop which is used to control the different actuators and the
high-level loop which aims at controlling the displacement of the rolling system are presented.
Moreover, a section which details the different required models is proposed.

51





Rien ne vaut la recherche lorsqu’on veut
trouver quelque chose.

J. R. R. Tolkien, extrait de Bilbo le
Hobbit

Chapter 3

Aircraft on ground automatic guidance:
from actuator control to path following

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Presentation of the thesis framework . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Low-level control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2.1 Steering of the nose landing gear . . . . . . . . . . . . . . . . . . . 55

3.2.2.2 Shimmy phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 High-level control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3.2 State of art on automatic guidance in aeronautical domain . . . . 67

3.2.3.3 Automatic guidance - geometrical approaches . . . . . . . . . . . . 68

3.2.3.4 Automatic guidance - model-based approaches . . . . . . . . . . . 72

3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Models description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Aircraft on ground modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1.2 Non-linear accurate A/C model . . . . . . . . . . . . . . . . . . . 78

3.3.1.3 Low speed non-linear lateral A/C model . . . . . . . . . . . . . . 80

3.3.1.4 Bicycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.2 Nose landing gear modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2.2 Non-linear NLG steering model based on an A/C model . . . . . . 82

3.3.2.3 LPV NLG steering model based on an A/C model . . . . . . . . . 84

3.3.2.4 Simple LPV NLG steering model . . . . . . . . . . . . . . . . . . . 85

3.3.3 Shimmy modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.3.1 Description of Somieski’s model . . . . . . . . . . . . . . . . . . . 87

3.3.3.2 State space representation of Somieski’s model . . . . . . . . . . . 88

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

53



Chapter 3. Aircraft on ground automatic guidance: from actuator control to path
following

3.1 Introduction

The two previous chapters give theoretical aspect on systems, models and control theories. Now,
this chapter aims at presenting the framework of the applications in which the introduced the-
oretical tools will be applied and at giving the equations of the models used to synthesize the
controllers and to perform the simulations.

Firstly, in Section 3.2 the problematic of automatic guidance, from actuator control to path
following is introduced. Particularly, two different loops of the control structure are defined:

• the low-level loop (cf. Section 3.2.2), which aims at controlling the actuators,

• the high-level loop (cf. Section 3.2.3), which defines the strategy to obtain an automated
rolling system.

For the low-level loop, two applications are detailed. On the one hand, the steering of the nose
landing gear with the presentation of the DRESS electromechanical actuator is proposed. On the
other hand, the presentation of the shimmy phenomenon (an unstable oscillation of the landing
gear) [Besselink, 2000] and the existing control solutions which are proposed in the literature to
damp these oscillations [Goodwine and Stépán, 2000] [Fallah et al., 2008] are suggested.

For the high-level loop, the attention is focused on control solutions based on geometrical
approaches (cf. Section 3.2.3.3) or model-based approaches (cf. Section 3.2.3.4) which help to
automatically guide a rolling system (a car vehicle, an A/C, ...). This section gives the possibility
to point up three control strategies (“Follow the carrot”, MPC and NNMPC), particularly adapted
for the current application, which will be studied in detail in Chapter 5.

Secondly, mathematical equations of models used in Chapters 4 and 5 used to synthesize the
controllers and to perform the simulations are detailed. Three classes of models are presented:

• A/C on ground models (cf. Section 3.3.1,

• nose landing gear steering models (cf. Section 3.3.2),

• shimmy model (cf. Section 3.3.3).

3.2 Presentation of the thesis framework

3.2.1 Introduction

The purpose of automatic guidance is to drive a rolling system (a car vehicle, an A/C, ...)
from a point A to a point B by following a particular path or trajectory. Some exam-
ples in the literature suggest different solutions for different rolling systems: mobile robots
[Peng et al., 2007], car vehicles [Falcone et al., 2007b], agriculture vehicles [Fang et al., 2005],
motorcycle [Rowell et al., 2007].

From these approaches, it is possible to identify three distinguishable strategies for the pur-
pose of automatic guidance: the “Lateral guidance (LG)”, the “Lateral or Longitudinal guidance
(LoLG)” and the “Lateral and Longitudinal guidance (LaLG)”. For the LG, the rolling system
is generally driving at constant speed and the aim is to generate a steering input such that the
system follows the path [Chaib et al., 2004], [Cole et al., 2006]. With regard to the LoLG, the
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strategy is divided in two different parts; the first part aims at steering the rolling system and
the second one aims at cruising the system. The particularity of this strategy is the decoupling
of the longitudinal control and the lateral control and the fact that only one control action (lon-
gitudinal or lateral) may be performed. For the LaLG, the objective is similar to the preceding
case, however the longitudinal and lateral dynamics are handled at the same time by a unique
controller [Gu and Hu, 2002, Maalouf et al., 2006] [Beji and Bestaoui, 2005].

Considering the three previous presented strategies (LoLG, LaLG and LG), the control struc-
ture could be the same. It consists of two loops, a low-level loop (for steering and/or speed
control purpose) and a high level loop (for path following or trajectory tracking). These loops
are presented in Figure 3.1 which represents the proposed control structure.

+
- -

+

High level loop

Low level loop

Path or trajectory Path Following
or

Traj. Tracking

Speed/steering
actuator
controller

Steering actuator
and/or

speed actuator

Steering angle and/or longitudinal speed

Rolling system states (position and heading)

Rolling system
on ground
dynamics

Rolling system

Figure 3.1: Guidance control structure

The low-level controller goal is to take the instructions given by the high level controller and
to generate an appropriate signal to adapt the lateral and/or longitudinal dynamics of the rolling
system. In this manuscript, the low-level loop corresponds to the control of the electromechanical
NLG actuator (cf. Chapter 4). The high level controller responsibility is to assimilate the current
rolling system configuration and the path or trajectory specificities to generate the different inputs
that will be applied to the rolling system. Control algorithms dedicated to the high-level loop,
are detailed in Chapter 5 and implemented for car vehicles.

3.2.2 Low-level control loop

Two main applications are treated in the low-level control loop. On the one hand, the steering of
the landing gear is discussed. This consists in introducing the different solutions which help to
rotate the wheel and consequently permit the lateral displacement of the A/C. On the other hand,
the shimmy phenomenon is discussed. This phenomenon, manifested by unstable oscillations of
the landing gear, is clearly explained and the solutions to cope with are introduced.

3.2.2.1 Steering of the nose landing gear

This section aims at presenting different systems used to steer the nose landing gear. Firstly, a
state of art, which presents existing actuation solutions and their control units is proposed. Sec-
ondly, the new electromechanical steering actuator developed in the frame of the DRESS project
is introduced. Moreover, specifications which have to be respected by the control algorithms,
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presented in section 4.2 are detailed.

State of art on nose gear steering system and control unit

The NLG system is composed of the “upper part” (the electromechanical actuator, that means
the electric motor and its mechanical transmission) and the “lower part” (the turning tube, the
sliding tube and the wheel). Figures 3.2 and 3.3 give the details of the subsystems composing
the NLG system.

vertical load Fz

actuator
(motor +
mechanical
transmission)

resistive torque Tr

input torque Tem

torque on leg Tleg

J1

ecompass

J2

longitudinal speed Vx tyre

wheel angle θw

turning tube angle θt

turning tube

sliding tube

Vx
e

θw

βNW

Figure 3.2: Nose Landing Gear

Functions of a nose landing gear (cf. Figure 3.3) are duplicated:

• absorb a small share of the A/C landing energy, insofar as the major energy is received by
the main landing gears,
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side view front view

torque link

hydraulic

actuator

turning tube

wheels
sliding tube

Figure 3.3: A nose landing gear

• perform ground manoeuvre of the A/C.

For the last purpose, the lower part of the NLG to which the wheels are attached, can rotate
around the vertical axis. This rotation corresponding to a demanded angle, produces a lateral
force on the wheels forcing the A/C to turn.

Currently, hydraulic actuators are used to rotate the NLG and then let the A/C following
the desired path. Various design configurations are available:

• “rack and pinion” hydraulic actuator:
the hydraulic fluid, introduced under pressure in one of the two opposite actuator chambers,
moves the rack which rotates the pinion fixed on the landing gear turning tube. Then,
through the landing gear torque link (also called compass), the lower part of the landing
gear rotates. This type of assembly is complex, expensive and requires frequent adjustment
of the gear system to control backlash (it corresponds to the amount of lost motion due to
clearance or slackness when movement is reversed and contact is re-established, in a pair
of gears for instance).

• “push/pull” hydraulic actuator:
this system consists of two simple linear actuators. Steering of the nose wheel is effected by
simultaneously pushing with one linear actuator and pulling with the other actuator. The
system thus operates as a dual crank and crankshaft mechanism which translates the linear
force of the actuators to a rotational torque applied on the landing gear. The disadvantage
of this type of system is that the actuators must necessarily be designed to have excess
power insofar as the torque is unevenly applied across its range of rotation.
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Pilots control the orientation of the nose landing gear wheels using a small control wheel tiller
located on both sides of the cockpit. Until the advent of the “steer by wire” technology, the link
between the pilot’s control tiller and the hydraulic control valve was made by a mechanical cable,
which closed the loop by providing the control to the hydraulic valve as well as the feedback.
A tiller demand actuated the hydraulic valve input which activated the actuator proportionally.
Currently, “steer by wire” technology is embedded in A/C. Thus, an electric control signal which
comes from the pilot’s tiller sensor, is transmitted to an electronic control unit. This latter sends
a control current to an electro-hydraulic servovalve which distributes the hydraulic pressure to
the appropriate actuator chamber and let the lower part of the landing gear rotate. In the control
unit, a comparison is done between the order given by the pilot and the current position of the
wheels, measured by an electric sensor and a simple PID-type controller calculates the new order
to be effectively transmitted to the electro-hydraulic servovalve.

In the frame of the DRESS project, a new electromechanical actuator which has the objective
to increase the safety and reliability levels of the A/C ground steering system is developed. This
new system will be compatible with future fully automatic ground guidance system requirements.

Electromechanical steering system

In the frame of the DRESS project, the new electrical nose wheel steering system which has been
proposed, is based on a distributed architecture. This architecture is presented in Figure 3.4.

b
ra

k
e

b
ra

k
e

m
o
to

r
m

o
to

r

re
d
u
ce

r
re

d
u
ce

r

cl
u
tc

h
cl

u
tc

h

worm gear

worm gear

NLG

A/C

front

Figure 3.4: Architecture of the DRESS electromechanical actuator (from DRESS WP410)

A trade off considering safety, reliability, integration, mass, efficiency, conception and innova-
tion has been performed to finally define the actuator’s architecture. The redundant actuator is
composed of two separate “paths” which could be potentially disengaged by the use of a clutch.
It offers:

• a 50% - 50 % power capability in normal mode (when the two paths are ON),

• a 100% - 0% capability in reversionary mode (when only one path is ON); this configuration
has thermal limitation at motor and control motor level,
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• a torque summing duplex design,

• an overall reducer ratio of 845.5.

This actuator is composed of the following components:

• two motors: brushless DC / Permanent magnet synchronous motors which are recognized
to have exceptional torque-to-volume and torque-to-weight performances,

• two brakes: electrically controlled, monostable brakes to lock the motor shaft in position,

• reducers: used to increase the torque and decrease the speed at the output of the motors
with a ratio equal to 59,

• clutch: electrically controlled clutch which is normally declutched, to allow NLG free cas-
toring1 for the towing mode2. It helps to change the configuration of the actuator: ac-
tive/active configuration in normal mode (the two paths operate) and active/passive con-
figuration in degraded mode (one path is declutched when a problem is identified on one
of the two paths),

• worm gear: to sum the torque at the output of the reducers,

• wheel gear: fixed to the NLG, in order to perform its rotation.

A picture of the DRESS electromechanical actuator is proposed in Figure 3.5.

Specifications

To be incorporated into future aircraft and to be compatible with future fully automatic ground
guidance system requirements, strict specifications must be respected by the DRESS actuator as
well as the closed-loop system. These specifications, provided by the A/C manufacturers, define
the required responses of the system for particular input signals and its domain of validity. In
the case of the DRESS actuator, beside all the constraints, two main specifications must be
respected for the control point of view:

1. Specification 1: frequency response,

considering the frequency response, the Bode diagram of the closed-loop, that means the
Bode diagram between the wheel angle demand θw ref and the effective wheel angle θw

must respect a plot similar to the one presented in Figure 3.6.

The considered figure notably shows that at low frequency, just a 2 dB difference is tolerated
between the wheel angle reference and the effective wheel angle. Then, the phase plot
points out that just a −12◦ delay is accepted. At higher frequency, around 5Hz, the bode
characteristic drops off meaning that higher differences are allowed between the wheel
angle reference and the effective wheel angle. Nevertheless, no overshoot, are permitted
for these frequencies, the effective wheel angle has to be smaller than the reference angle.
Similar comments can be done for the phase; for high frequencies, a more important delay
is admitted.

1

2
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Figure 3.5: DRESS electromechanical steering actuator
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2. Specification 2: velocity step response.

considering the step response, a ramp in position is demanded such that the wheel speed
demand θ̇w demand equals 10m/s. In this case, the wheel speed θ̇w is constrained as it is
presented in Table 3.1 and Figure 3.7. The main particularities of this figure are that
the response must be fast insofar as the rise-time from 0 to 64% is less than 155ms; the
overshoot is limited because its maximum must not be beyond 10% and the final value has
to be reached in only 300ms with a low error which must be less than 2%.

Symbol Description Value Unit

w0

Maximum allowable overshoot beyond
θ̇w demand which is the nose wheel steering rate
demand

10 %

wA Settling criteria, centred on θ̇w demand ±2 %

τd
Maximum allowable time delay (demand to
response)

25 ms

τ1r
Maximum allowable rise time from 0% to 64%
if no overshoot

155 ms

τ2r
Minimum allowable rise time from 10% to 90%
in case of overshoot

120 ms

ts

Maximum allowable time to achieve settling
criteria (difference between steering rate and
demand absolute value ≤ 2%)

300 ms

Table 3.1: Specification 2: step response

Commentary The two specifications detailed in this section are only related to control
purposes. The frequency response and the step response describe the
performances that the closed loop system must reach. Nevertheless, nu-
merous other constraints have been defined in the frame of the DRESS
project. For example, power constraints have been given insofar as 2 dif-
ferent power supplies, a low voltage supply (28V DC) and a high voltage
supply (270V DC) are available. Environmental requirements have also
been identified as for instance the fact that the landing gear must stand
up from −55◦C to 70◦C.

3.2.2.2 Shimmy phenomenon

This section aims at introducing the shimmy phenomenon. On the one hand, a description of the
shimmy is proposed; the different parts involved in the phenomenon are described, the issues re-
lated to the occurrence of this phenomenon are mentioned and the modelling of this phenomenon
is discussed. On the other hand, the solutions which help to remedy the malfunctions due to
the shimmy phenomenon are discussed and the solutions proposed in this work, based on fuzzy
adaptive control are described.
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Figure 3.7: Specification 2: step response

What is shimmy?

The shimmy phenomenon is the self-excited oscillation of a wheel around its vertical axis, which
may occur in many physical rolling systems such as aircraft nose wheels, automobiles, motorcy-
cles... In the context of aircraft, shimmy is an unstable oscillatory phenomenon, which combines
lateral and yaw motion of the landing gear, mainly due to the interaction between the ground,
the tyre and the landing gear structural dynamics. A number of conditions such as low torsional
stiffness, excessive free-play in the gear, wheel imbalance or worn parts may cause shimmy oscil-
lations. Everything on the landing gear has an impact on the shimmy behaviour. The motion
has a typical frequency in the range of 10 to 30Hz. This phenomenon may grow to an uncom-
fortable level of vibrations and can, in particular cases, result in severe damage to the landing
gear. Figure 3.8 illustrates the consequence of the shimmy phenomenon observed on a A/C NLG
during a rolling sequence.

Difficulties to model the shimmy phenomenon - literature review

Modelling and simulation of the shimmy phenomenon are primordial tasks in order to control
it. Indoor testing is critic insofar as the considered energies are very important. In like manner,
during the conception of a NLG, shimmy testing on an aircraft is very risky and dangerous
because the system becomes unstable and may break out. Moreover, shimmy is a complex
phenomenon which is influenced by many parameters and different sensitivity analysis available in
the literature ([Somieski, 1997] [Besselink, 2000]) show that a thin variation of critical parameters
may modify the characteristics of the system from a stable behaviour to an unstable one. Then,
for this particular application, it is obvious that an accurate model description is essential.

The number of publications available in the literature appears to be relatively small, in spite
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Figure 3.8: Shimmy phenomenon (from [Besselink, 2000])

of the fact that shimmy studies have a long history. Initially, the main focus was to obtain a
good description of the tyre behaviour. Then, in the fifties, the tyre models of Von Schilippe
[Schlippe and Dietrich, 1954], Moreland [Moreland, 1954] and Smiley [Smiley, 1957] were devel-
oped. The description of the tyre model was naturally followed by several works which concern
the methodology to obtain accurate tyre parameters. In this way, [Smiley and Horne, 1960] fur-
nished an overview of measurements for many different aircraft tyres and [Black, 1982] provided
an approach to obtain the tyre parameters. Initially, the models that helped to study shimmy
stability were linear and, little by little, non-linear models for both the tyre and the landing gear
have been proposed. An accurate review of landing gear shimmy is available in [Besselink, 2000].

Currently, in the literature, different models help to describe and analyse shimmy
[Goodwine and Stépán, 2000], [Sura and Suryanarayan, 2004], [Thota et al., 2008] and
[Somieski, 1997]. [Goodwine and Stépán, 2000] proposes a model which is described by 3
non-linear equations. It considers the steering dynamics, that means the rotation around the
vertical axis, the lateral displacement at the kingpin (connecting point between the leg and
the body) and the wheel angle rotation. Two main drawbacks can be noticed with this model.
On the one hand, some modelling simplifications are performed: the torsional characteristics of
the landing gear are not taken into account and the elasticity is simply modelled by a spring.
On the other hand, it can be shown that the linearised stability of the system around its zero
position does not contain the A/C longitudinal speed which is a crucial parameter for the
stability analysis. The model presented by [Sura and Suryanarayan, 2004] is quite similar to the
one mentioned previously by considering the lateral displacement of the wheel and the rotation
around the vertical axis. This model does not take account of the wheel angle rotation but the
dynamics of the landing gears are considered and modelled by a non-linear stiffness. However,

64



3.2. Presentation of the thesis framework

the main drawback of this model lies in the modelling of the W/R interface. As it is mentioned
in the literature, the tyre plays a very important part in the shimmy phenomenon and its mod-
elling with a hard contribution (the lateral tyre is modelled by a positive or negative constant
depending on the sign of the skid velocity which represents the velocity of the tyre contact
point with respect to ground) seems to be not representative enough. A recent model has been
developed by [Thota et al., 2008]. This mathematical model is described by a five dimensional
system which considers two modes (torsional and lateral dynamics). It takes account of different
geometrical characteristics of the landing gear 3 and models the W/R interface by the use of
a non-linear tyre model. This model is accurate and considers a lot of contributions which are
very important insofar as the shimmy phenomenon is due to the interaction of the different
landing gear components. It seems that this kind of model is appropriate for the analysis
of the shimmy phenomenon, when the importance and the contribution of each parameter is
studied. However, in the case of control purposes, a compromise between the accuracy of the
system description and the complexity of the obtained model has to be considered. Thus,
considering the conclusions of [Thota et al., 2008] mentioning notably that the torsional mode
is still dominant, it is possible to consider an intermediate model. The last shimmy description
available in the literature is the one provided by [Somieski, 1997]. This model describes the
more influencing contributions insofar as it considers the torsional dynamics of the landing gear
and the non-linear W/R interface. Then, the sensitivity analysis proposed by the author helps
to conclude on the contributions of the longitudinal speed, the caster length and the mechanical
characteristics of the landing gear. As a conclusion, this model has been chosen as a reference
model for the shimmy phenomenon description. This model which is well detailed in detail in
Section 3.3.3, has been used to develop the presented active shimmy damping solutions.

Solutions for shimmy damping: passive vs active solutions

As mentioned previously, shimmy engenders malfunctioning or severe damages of the different
parts of the NLG. Then, a solution which helps to damp the unstable oscillations of the shimmy
phenomenon is required. A classical solution to avoid shimmy is to increase the global stiffness
of the NLG by changing its material for instance and to increase the damping constant by using
additional passive dampers. These passive damping solutions are proposed by [Besselink, 2000].
One of the main drawbacks of such shimmy passive damping solutions is that under changing
load conditions or ground-tyre interfaces, they may not be efficient because of the fixed structural
parameters of the NLG. Moreover, when it is chosen to oversize the NLG to prevent from shimmy,
the high stiffness is achieved at the cost of a large mass. Then, considering the limitations of
passive damping, active solutions may be investigated in order to take account of the changing
conditions.

Today, active shimmy damping is made with hydraulic steering systems. The shimmy oscilla-
tions are damped by preventing the hydraulic fluid from travelling freely at high speeds without
resistance from one actuator chamber to the opposite one. This is done by installing hydraulic
restrictors on the actuator chambers or in the hydraulic control unit usually located close to the

3the rake angle that means the inclination of the landing gear around the vertical axis and the tilt angle that
means the inclination of the wheel angle around the forward axle when a steering angle is applied
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actuator. The restrictors are biased in order to oppose a high resistance when the fluid is leaving
the chamber and a low resistance, to avoid cavitation, when the fluid is entering the chamber.

As it has been widely mentioned earlier, hydraulic actuators are currently replaced by elec-
trical actuators. Due to the improvement of the embedded systems (microprocessor efficiency,
field bus integration,...) electrically-based active shimmy damping control solutions are now con-
ceivable. Several control solutions, proposed in the literature help to steer the electromechanical
actuator and in parallel to damp actively the shimmy oscillations [Goodwine and Stépán, 2000],
[Fallah et al., 2008].

[Goodwine and Stépán, 2000] proposed a shimmy damping solution which aims at transform-
ing a non-linear system into a linear one through feedback linearisation. The main assumption
of this control solution is the fact that the dynamics of the system are entirely known. Indeed,
the controller takes account of these dynamics and cannot be adapted. When some external per-
turbations affect the system, the proposed solution cannot change its behaviour. For example,
it is a major drawback when the W/R interface varies from wet to icy conditions.

[Fallah et al., 2008] developed a robust MPC solution which can effectively suppress the
shimmy. The proposed control solution is based on a LPV model and constraints on the control
signal and on the output are considered. The authors focus their works on the computational
efficiency of the robust MPC algorithm. But, despite significant improvements over other similar
approaches, the average computational time per loop of the algorithm is larger than the sampling
interval. Such solution is not currently conceivable for real time application. Moreover, the LPV
model which helps to synthesize the controller only considers variations of the A/C longitudinal
speed. It could be interesting to take account of the variations of other parameters like the
tyre lateral forces characteristics. Finally, the solution is based on state measurements and it is
well-known that in the aeronautical domain measurements are difficult and expensive to obtain.

As a conclusion, the two active damping control solutions proposed overhead could not be
conceivable for an A/C implementation. Then, in the frame of this thesis, control solutions,
validated by simulations are proposed. Thus, Sections 4.3.3 and 4.3.4 present results obtained
with fuzzy adaptive algorithms. The two first solutions are based on state feedback control
solution while the last solution deals with output feedback control solution. The validation is
obtained with three scenarios detailed in Section 4.3.2. Scenario 1 considers a constant ground
speed and a pulse disturbance acting on the NLG. For scenario 2, the ground speed is always
constant but the roughness of the runway is taken into account. Finally, Scenario 3 aims at
studying the effect of varying ground speed on the control solution efficiencies.

3.2.3 High-level control loop

3.2.3.1 Introduction

It exists a lot of algorithms solving the problem of automatic guidance. Among all the existing
solutions, it is possible to distinguish two main approaches. On the one hand, the algorithms
based only on geometrical approaches consider Cartesian or polar representation of the road to
be followed to produce the appropriated control signal. As it could be read in Section 3.2.3.3,
the existing solutions are the “follow the carrot”, the “pure pursuit”, the “virtual vehicle” or the
“vector pursuit”. On the other hand, the model-based approaches use some description of the
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road to be followed but also considerations about the rolling system. In this second class of
solutions, the approaches based on neural network, backstepping, adaptive control, fuzzy logic,
MPC and NNMPC are detailed (see Section 3.2.3.4). All the solutions are described and their
advantages and disadvantages are mentioned. Finally, the choice of the better solutions concludes
this section.

3.2.3.2 State of art on automatic guidance in aeronautical domain

In the aeronautical domain, air transportation has increased a lot over the last decade. This leads
to the congestion of the airports due to an unappropriated modus operandi. To remedy this prob-
lem, either infrastructure renovations and new airports must be considered or the management of
the A/C on ground must be rethought. Here, discussions focus on solutions to improve the move-
ment of the A/C on ground without changing the existing infrastructure. Two solutions help to
reach more flexible A/C on ground displacements. On the one hand, ground traffic control has to
be improved. Current solutions based on surface movement radar are limited due to an incom-
plete surveillance, the fact that the weather affects greatly the traffic... Recently, ground traffic
control has been improved through the A-SMGCS (Advanced Surface Movement Guidance and
Control System) project [Adamson, 2005]. The objectives of this A/C on ground movement con-
trol is multiple. It helps to supervise the real time situation of the traffic (A/C position, speed,
destination ...). It gives the possibility to control the traffic and particularly it detects conflicts.
Moreover, it enables the A/C routing, it defines the A/C road to follow and allows destination
changing; the system is very adaptive. On the other hand, an automatic guidance system could
be introduced. It aims at introducing a high level control loop which replaces the manual steer-
ing control [Duprez et al., 2004], [Duprez, 2004] , [Villaumé, 2002], [Roos and Biannic, 2006]. It
gives the possibility to follow a trajectory or a path whatever the weather and the ground condi-
tions are (dry, wet, icy, ...). Moreover, an automatic guidance system improves the flow of traffic
because the A/C speed could increase and then taxiing time will reduce.

[Villaumé, 2002] suggests a new procedure for the automatic landing by acting on the lon-
gitudinal and the lateral A/C dynamics. During, the landing phase, an automatic deceleration
profile is generated; the system aims to predict the reachability of the exit way and provides an
optimal deceleration control. A solution to follow the runway axle is proposed, this is done by
calculating the distance between the runway axis and the A/C and by providing a control of
the A/C yaw angle. [Duprez, 2004] continued the Villaumé’s works and developed speed control
laws which use the braking system and the engine thrust. Then, lateral control solutions which
takes account of the non-linear dynamics have been studied. Finally, [Roos and Biannic, 2006]
proposed an aircraft-on-ground lateral control which has the particularity to consider the sat-
uration of the system. The efficiency of the solution is notably due to its adaptive properties
insofar as an on line procedure estimates the runway state (dry, wet or icy).

The studies available in the literature ([Villaumé, 2002], [Duprez, 2004] and
[Roos and Biannic, 2006]) propose very interesting control solutions to act on the longitu-
dinal and lateral dynamics of the A/C. These solutions have the advantage to consider different
runway states (dry, wet or icy) or to take account of actuators saturations. Nevertheless,
information provided by accurate positioning devices, like GPS for instance, are not considered
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in this applications. Indeed, from the A-SMGCS system, it could be possible to define the road
that the A/C must follow and using GPS information, control solutions can be developed to
minimize the distance and the time to travel between the desired road and the A/C position.

3.2.3.3 Automatic guidance - geometrical approaches

This section aims at presenting a review of the different automatic guidance algorithms based
on geometrical approaches. Four different strategies are presented and Table 3.2 describes the
advantages and disadvantages of each.

Follow the carrot

A carrot point (i.e. an objective point), that is at a Look Ahead Distance (LAD) along
the specified path, is defined. The aim of this algorithm is to join this changing point
[Hellstöm and Ringdahl, 2006]. This is achieved by minimizing the orientation error between
the vehicle and the carrot point. This angle is εEO. Then, the steering angle δ is obtained by a
simple proportional control law:

δ = kp × εEO (3.1)

carrot point

LAD

P

εEO

Figure 3.9: Follow the carrot

The LAD is the calculation of the distance on the path P as presented in Figure 3.9. To
facilitate the calculation of this distance, it was chosen to define it as the distance between the
rolling system centre of gravity and one point on the path.

This solution has some major drawbacks. The LAD is a very important parameter of the
controller. This value must be chosen very carefully. A short LAD value implies that the rolling
system will oscillate. A large LAD value implies that the rolling system will cut the corners.
Then, the speed of the rolling system affects the results of the controller. A good tuning for a
particular speed could be a bad tuning for another speed.
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Some solutions could be used to solve this problem. First, to take into account the speed
dependency of the system, a gain scheduling method can be applied. Then, the steering angle
could also be a function of the speed. In other words, the two parameters LAD and kp are speed
dependent. Then, the choice of the two previous parameters is quite difficult and an optimization
algorithm has to be used to find them precisely. The fitness function of the optimization algorithm
evaluates the distance between the rolling system and the path for each iteration. Then, these
values are summed. Moreover, it is possible to add an integral and a derivative contribution
for the controller. The integral contribution enables to erase the static error and the derivative
contribution erases the overshoot and the oscillations. Finally, the method could be improved
by combining the orientation and perpendicular distance errors into the steering angle control
law such that δ = kp × εEO + kd × d with d the perpendicular distance to the path.

Pure pursuit

An improvement of the “follow the carrot” method is the pure pursuit. The calculation of the
future steering input is based on the calculation of the curvature necessary to reach the carrot
point. The algorithm is divided in five parts [Putney, 2006] [Coulter, 1990]:

• determination of the current location of the vehicle,

• research of the closest path-point to the vehicle,

• research of the goal-point based on the LAD,

• calculation of the curvature,

• calculation of the steering angle.

The calculation of the curvature is based on geometrical aspects. Considering the path P in
the vehicle coordinates, (x, y) is the carrot point, r is the radius of the arc that joins the origin
of the referential to (x, y) and whose chord length is the LAD.

Then, the following geometrical equations are obtained:
{

x2 + y2 = LAD2,

x + d = r,
(3.2)

then with,

d = r − x,

(r − x)2 + y2 = r2,

r2 − 2rx + x2 + y2 = r2,

LAD2 = 2rx,

(3.3)

the curvature is:

γ =
2x

LAD2
(3.4)

Finally the steering angle input applied to the system (considering the wheel base L of the rolling
system) is:

δ = tan−1(γL) = tan−1

(
2xL

LAD2

)
. (3.5)
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Figure 3.10: Pure pursuit

Virtual vehicle method

The virtual vehicle method [Egerstedt et al., 2001] uses the “follow the carrot approach”, defining
a target (the virtual vehicle) to be reached and it aims at limiting the distance between the road
and the vehicle such that the equation lim

t→∞ sup ρ(t) ≤ LAD with ρ(t) the distance between the
vehicle and the desired point, is respected. Furthermore, the motion of the desired point (the
virtual vehicle) is governed by a differential equation containing error feedback. The target path
is given by a curvilinear representation:

{
xd = p(s)
yd = q(s)

(3.6)

then based on a differential equation:

ρ̇− ˙LAD = −γ(ρ− LAD) (3.7)

with ρ the distance between the rolling system and the carrot point and γ = 1
LADv cos(ψd−ψv).

The algorithm is:





ṡ =
1√

p′2 + q′2 cos(ψd − θr)
(2v cos(ψd − ψv)− γρ)

δ = −k(ψ − ψd)
v = constant speed

(3.8)

with ψd the desired orientation, ψv the velocity vector angle and θr the orientation angle
of the tangent to the reference path at s. As a remark, it can be noticed that equation (3.8)
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Figure 3.11: Virtual vehicle

uses two different notations to formulate the derivative. The first ṡ represents a derivative with
respect to time while the second p′ or q′ are derivatives with respect to the curvilinear variable
s. The introduced notations are specified in Figure 3.11 relative to the virtual vehicle control
solution.

The algorithm is based on a constant speed assumption, but [Egerstedt et al., 2001] present
another algorithm which adds a longitudinal velocity control.

Vector pursuit

“Vector pursuit” is a path-tracking method that uses the theory of screws [Wit, 2000]; it is a
way to express displacements, velocities, forces and torques in three dimensional space, combin-
ing both rotational and translational movements. This technique is similar to other geometric
methods in that a LAD is used to define a current goal point, and then, geometry is used to de-
termine the desired motion of the rolling system. On the other hand, it is different from current
geometric path-tracking methods, such as “follow the carrot” or “pure pursuit”, which do not use
the orientation at the look-ahead point. This method adds the current position error multiplied
by some gain to the current orientation error multiplied by some gain, and therefore becomes
physically meaningless since terms with different units are added. Vector pursuit uses both the
location and the orientation of the look-ahead point.

Conclusions for the geometrical approaches

These conclusions are summarized in Table 3.2 .
The first method based on a carrot point is the preferred geometrical approach. Its imple-

mentation is easy and the steps of this approach are quite similar to the behaviour of a driver.
Indeed, a point in front of the vehicle is fixed and the steering order is given based on the vehicle
status. Then, this control solution has been implemented in real time on the test vehicle and
Section 5.6.2 presents the obtained results.
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Method Advantages Drawbacks

Follow the carrot easy to implement oscillates around the target
path for short look ahead dis-
tances, cuts corners

Pure pursuit competitive for curved path bad performances for straight
path

Virtual vehicle quite robust with respect to
measurement errors and exter-
nal disturbances

calculation load

Vector pursuit good following with correct
orientation and curvature

complexity

Table 3.2: Geometrical approaches comparison

3.2.3.4 Automatic guidance - model-based approaches

This section aims at giving a global overview of the different automatic guidance algorithms
based on a model. Six different strategies are introduced (neural network, backstepping, adaptive
control, fuzzy logic, MPC and NNMPC) and Table 3.3 ends this section by giving the advantages
and disadvantages of each solution.

Neural network

Neural network control has been applied to solve the problem of trajectory tracking
[Peng et al., 2007]. Here, the authors use a recurrent fuzzy cerebellar model articulation con-
troller (RFCMAC) network structure to control the longitudinal and lateral dynamics of a par-
ticular rolling system, a mobile robot. The advantages of CMAC technique, compared with other
neural networks are its excellent learning characteristics and its fast computation speed. The
network presented in [Peng et al., 2007] is a recurrent network (i.e. with an internal feedback
loop) and demonstrates good performances in the presence of parameter variations, external
disturbances and unmodeled and non-linear dynamics. Then, a fuzzy layer is added to take
into account the input uncertainties. Finally, the backpropagation is used to train the proposed
RFCMAC network and simulations are made. However, this solution needs important memory
requirement and based on simulation results, it can be shown that control signals provided to the
real system have high dynamics (the controller engenders high fluctuations of the control signal).
The control algorithm uses four inputs: the velocity error, its rate, the azimuth (or orientation
angle) error and its rate. It helps to compute two outputs and these computed driving torques
are used to control left and right wheels.

Backstepping

[Fang et al., 2005], [Fang et al., 2006] applied backstepping control theory to solve trajectory
tracking problems. In these works, the longitudinal and lateral control are based on a backstep-
ping algorithm which integrates a parameter adaptation technique. This technique provides a
constructive systematic method to achieve globally stabilizing control laws. In other words, the

72



3.2. Presentation of the thesis framework

control signal is built step by step by considering successive virtual controls which stabilize a vir-
tual increasing system until a global control law stabilizes the full system. A detailed explanation
applied on a simple second order system is presented in [Fang et al., 2006]. Afterwards, the al-
gorithm is applied on an agriculture vehicle which is modelled with a kinematic model combined
with sliding. The particularity of this robust adaptive backstepping algorithm is to consider the
sliding effect as an unknown constant contribution with time-varying bounded disturbances.

The previously cited papers show the design of two control signals (wheel rotating velocity and
steering angle of the virtual front wheel) which guarantee that the longitudinal and lateral errors
tend to zero and the orientation error is bounded. The different gains used for this algorithm
should be tuned gradually to make an “optimal” compromise between transient characteristics
and limited bandwidth of the steering system.

Unfortunately, the calculation of the control signals is quite difficult and the obtained expres-
sions are usually complex. However, the authors present a simplified adaptive controller with
projection mapping and the conclusions show that in particular cases, a simplified controller
could be enough.

Adaptive control

The theory of adaptive control has been used by different authors [Beji and Bestaoui, 2001],
[Beji and Bestaoui, 2005] and [Netto et al., 2004]. Generally, models used for the description of
the rolling systems are highly non-linear. Moreover, uncertainties of the modelling are quite
important, notably tyre/road contact parameters or other perturbations as wind forces. Then,
considering authors conclusions, adaptive control seems well suited to solve this problem, insofar
as the controller is based on linear structures which can be adapted to fit the non-linear behaviour
of the system.

Fuzzy logic

Fuzzy control is an interesting method for constructing non-linear controllers acting as a
“human-in-the-loop” controller for a system. Following these perspectives, it seems that
these methods could be adapted for trajectory tracking. Then, this theory has been used
for a few applications [Naranjo et al., 2003b], [Naranjo et al., 2005], [Naranjo et al., 2003a],
[Hajjaji and Bentalba, 2003], [Maalouf et al., 2006] which aim at controlling longitudinal, lat-
eral and combined longitudinal-lateral dynamics of rolling systems.

For example, [Naranjo et al., 2003b] use fuzzy control to perform a longitudinal control of
a rolling system. The controller adjusts speed in order to maintain a proper distance or gap
between vehicles. This fuzzy controller needs four inputs and one output is generated. The
inputs are the “speed error” which is the difference between the current speed and the driver
required speed, the “acceleration” which is approximated by the derivative of the speed at the
instant t, the “time gap” which represents the time needed by the pursuiver to reach the point
where the pursued vehicle is and finally the “derivative of time gap”. The output of the fuzzy
controller is the new accelerator pedal pressure. The controller uses five fuzzy rules to maintain
the present speed and to keep a safe distance.

[Naranjo et al., 2005], [Naranjo et al., 2003a] use fuzzy logic for the automatic control of the
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steering wheel of a vehicle. Only two input variables are needed to manage the steering wheel:
the lateral error and the angular error. The lateral error is the deviation, in meters, of the front
of the car from the reference trajectory, measured perpendicularly from it. The angular error
is the angular deviation, in degrees, of the vehicle from the reference trajectory. The output of
the controller is the steering angle. Two different operating modes are defined, one for straight
road driving and the other for curve driving. Based on these two modes, different membership-
functions are used. In fuzzy control, the shapes of these membership-functions could be difficult
to identify and here, they are derived from verbal description of driver behaviour and refined
experimentally. The four fuzzy rules are very intuitive and describe the behaviour of people when
manoeuvring car, the aim of the rules is to mimic human behaviour. Finally, the test shows that
the fuzzy control, with precise GPS map and positioning, can maintain a vehicle in its lane on
the road.

[Hajjaji and Bentalba, 2003], [Maalouf et al., 2006] use fuzzy logic for trajectory tracking.
Particularly, the objective of [Hajjaji and Bentalba, 2003] is to determine the control actions for
the traction force or braking force and the steering angle of the front axle of a car vehicle to
follow a trajectory defined by a reference vehicle. In other words, the objective is to make the
vehicle follow a desired trajectory such that the longitudinal velocity and the lateral velocity of
the real vehicle tend to the reference vehicle and the orientation error between both vehicles and
the coordinates of the position error tends to zero. The particularity of this paper is the use of a
Takagi-Sugeno model of a vehicle obtained by linearisation near different operating points and the
stability analysis of the controller based on Lyapunov’s method combined with the linear matrix
inequalities (LMI) approaches. [Maalouf et al., 2006] choose to adapt the linear velocity and
angular speed based on the look-ahead curvature to have a smooth and almost linear continuous
behaviour.

Model Predictive Control (MPC)

In this section, several control solutions based on models are presented. These methods are based
on classic MPC (the prediction consides a linear model), NMPC and NNMPC.

The problem of path following can be solved with MPC applied on linear systems and aims
at controlling the lateral dynamics of the rolling system. [Cole et al., 2006] applied the MPC
algorithm using the well-known yaw-sideslip “bicycle” model. In [Rowell et al., 2007], the aim is
to demonstrate the applicability of MPC for the control of motorcycle on a simple lane change
manoeuvre. The motion of the motorcycle is modelled by a non-linear model that is continually
linearised at each iteration step.

The methodology based on linear MPC ([Cole et al., 2006]) is an unconstrained predictive
control problem. This solution uses equations of motion that are derived with respect to axes
fixed in and moving with the vehicle. Then, the used model is a state space model with four
states, v(t) the lateral velocity of vehicle in the direction of vehicle’s lateral axis, w(t) the yaw
velocity of vehicle with respect to ground, y(t) the lateral displacement of vehicle in ground-fixed
axes, φ(t) the yaw angle of vehicle with respect to the ground. The input is the steering wheel
angle δ(t) and the chosen outputs are the lateral displacement and yaw angle. [Cole et al., 2006],
[Rowell et al., 2007] examined the problem of path-following control based on a linear model pre-

74



3.2. Presentation of the thesis framework

dictive control solution. However, a few systems are quite complicated and cannot be described
by a linear model and some more complicated theories are necessary.

Some other solutions, [Borrelli et al., 2005], [Falcone et al., 2007b], based on MPC are using
a non-linear model of the rolling system (NMPC). These algorithms focus on lateral control, the
aim is to minimize deviations from their references to the heading and to the lateral distance.
These algorithms using non-linear optimization give good results. However, MPC implementa-
tion requires significant computation infrastructure which might not be available on processes
with fast sampling time and limited computational resources. The authors present some non
linear solvers which can permit the resolution of the optimization problem. The solution of con-
strained non-linear optimization is a critical point, then it was proposed in [Borrelli et al., 2005],
[Falcone et al., 2007a] and [Falcone et al., 2007d] to work with LTV and PWA models.

Some improvements of the LTV MPC can be found in [Falcone et al., 2007c]. The authors
combine the brakes at the four wheels independently and the front steering systems to improve the
efficiency of the controller. Moreover, [Seyr and Jakubek, 2005] decides to work with a NMPC
solution but this implies a particular structure of the control function. In this case, the control
function u has the following expression, u(k) = A + B(1 − exp(−KTs), with K a constant, Ts

the sampling time. The aim of the optimization is simply the choice of the two variables A and
B.

Neural Network Model Predictive Control (NNMPC)

The theory of NNMPC is very close to the theory of MPC and the application of this algorithm
for automatic guidance is very new [Seyr et al., 2005], [Gu and Hu, 2002]. In this case, the only
difference comes from the structure of the model. Here, the prediction is made with a NN and
the following stages of the algorithm are the same ones as the traditional MPC. The algorithm
is tested on mobile robot and the results seem very satisfying.

Conclusions for the model-based approaches

The different model-based approaches are summarized in Table 3.3, giving their advantages and
drawbacks.

This bibliographic has studied presents the different model-based approaches used for path
following. Two solutions have been retained, both are based on MPC. Indeed, MPC aims at
defining a few points in front of the vehicle and calculating an optimal control signal which gives
the possibility to come closer to the path. In the path following application, the future points of
the road which must be reached are known, thus MPC which required a reference trajectory is an
appropriated method. Then, the optimisation which helps to obtain the control signal requires
a model of the system. In Sections 5.6.3 and 5.6.4, two different MPC solutions based on two
different prediction models will be implemented and tested on the vehicle. On the one hand, a
state space model will help to predict the system behaviour. On the other hand, a NN will be
used in the MPC process.
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Method Advantages Drawbacks

Neural network Easy to implement, need a
learning phase

Needs a lot of memory and no
application in vehicle or aero-
nautic domain, only robot con-
trol applications

Backstepping Gives good results at low
speed, can be coupled with an
adaptive part

The expression of the control
law is very complex

Adaptive control Takes into account the pertur-
bations and the uncertainties

The impact of noise is very im-
portant, the assumptions for
the stability are sometimes dif-
ficult to verify

Fuzzy logic Able to take account of many
parameters

Stability problems, difficulties
to tune the controller in terms
of membership functions

Model Predictive
Control

Very adapted for trajectory
tracking due to the prediction
of the behaviour of the rolling
system

Time needed for the optimiza-
tion step could be a problem
for real time implementation
but solutions as LTV MPC or
shape function could solve the
problem, the application only
deals with lateral control

Neutral Network
Model Predictive
Control

No accurate model of the
rolling system is necessary and
the model could be adapted at
each sample time during the
control stage

The model is not physical

Table 3.3: Model-based approaches comparison
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3.2.4 Conclusion

The two previous sections described the general principles of automatic guidance. A review of the
different control solutions adapted for low-level and high-level loops control have been presented.
It can be shown that an important number of parameters are involved in the implementation
of automatic guidance solutions. For example, the dynamics of the actuators have to be taken
into account as well as the lateral and longitudinal behaviour of the rolling system. Then, it
is important to define clearly the particularities of the study to obtain an appropriate control
solution.

Based on the presented approaches, it can be noticed that the model of the system is very
important. Indeed, the control algorithm highly depends on the model that is chosen. A lot
of different models are used in the literature, kinematic models, dynamic linear or non-linear
models, etc. A choice has to be done depending on the performances that must be reached.

Moreover, it seems that different control theories enable to solve the control issues raised in
this manuscript. It seems important to be able to differentiate the results provided by these
different control theories. Then, it is primordial to work with fixed test conditions (in term of
trajectory, speed) in order to test the different algorithms and compare them. Thus, it could be
interesting to follow the works of [Chaib et al., 2004] where an overview as well as a comparison
of four controllers is proposed, to compare the different algorithms.

Finally, this section gives the possibility to point out three control strategies (“Follow the
carrot”, MPC and NNMPC), particularly adapted for the application which will be studied in
detail in Chapter 5.

3.3 Models description

This section is dedicated to the presentation of the different models used in Chapters 4 and 5.
These models will help to synthesize the proposed controllers or to perform simulations using
the obtained controllers. The developped models are the following:

• A/C on ground models (cf. Section 3.3.1),

• nose landing gear steering models (cf. Section 3.3.2),

• shimmy model (cf. Section 3.3.3).

3.3.1 Aircraft on ground modelling

3.3.1.1 Introduction

This section focuses on the modelling of the A/C. These models are important insofar as they
will be used for different purposes: synthesis of the controllers (MPC in Chapter 5), modelling
of the NLG (this is clearly explained in Section 3.3.2) and for simulations purposes (for instance
the validation of the NLG control laws). Three different models are presented in this section:

• a non-linear accurate model which presents a global structure of the A/C; it will be used
to deduce simplified models (see Section 3.3.1.2)
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• a non-linear model adapted for low speed; based on the previous model, it is used for
simulation purposes (see Section 3.3.1.3)

• a simple LPV model, commonly called “bicycle model”; it is well-suited for controller syn-
thesis (see Section 3.3.1.4)

3.3.1.2 Non-linear accurate A/C model

The non-linear aircraft on ground dynamic model presented in this section corresponds to a
representation previously described in [Villaumé, 2002], [Jeanneau, 2007] and [Roos, 2007]. The
general structure of the model is divided in three blocks described in Figure 3.12. The different
variables which are introduced in this figure will be detailed in the following.

replacemen

Act F&M Dyn
1

s

θw ref

δr ref

Pbr ref

N1 ref

θw

δr

Tbr

Peng

F

M

environment aerodynamic

environment

aircraft
states

Figure 3.12: Architecture of the nonlinear A/C model (from [Roos, 2007])

• Act: corresponds to the different actuators (NLG, braking system, ...),

• F&M: corresponds to the description of the different forces and moments which act on the
A/C,

• Dyn: corresponds to the evolution of the A/C (12 degrees of freedom).

The equations of the A/C on ground dynamic movement, described in block Dyn, consider
the following 12 degrees of freedom:

• V = [Vx, Vy, Vz]: linear speed vector (longitudinal, lateral and vertical speeds) at the centre
of gravity,

• Ω = [p, q, r]: angular speed vector (roll, pitch and yaw speeds) at the CG,

• Λ = [x, y, z]: positioning vector of the CG,

• Ξ = [φ, θ, ψ]: angular vector (roll, pitch and yaw angles).

The evolution of the linear and angular speeds are obtained based on the Newton’s law of motion
applied at the A/C centre of gravity (CG) and are associated with the A/C axes presented in

78



3.3. Models description

C.G.
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θw
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Figure 3.13: Schema of the A/C

Figure 3.13. This figure introduces the longitudinal and lateral speeds Vx and Vy at the CG, the
yaw speed r which corresponds to the rotational speed around the vertical axis, the parameters
LNW and LMW which characterize the distances respectively between the CG and the NLG and

the CG and the MLG, the slip angle β at the CG defined by β = atan

(
Vy

Vx

)
and the wheel

angle rotation θw. Then, the equation of the movement helps to determine the position and the
different angles of the A/C on the runway. These different contributions are summed up in the
following equation:




V̇

Ω̇
Λ̇
Ξ̇




=




F

MA/C
− Ω ∧ V

M

J
− Ω ∧ JΩ

J
TΛ(Λ)
TΞ(Ξ)




(3.9)

such that the forces F and moments M are provided by the block F&M , MA/C corresponds to
the mass of the A/C and J is the matrix of inertia.

The block F&M details the forces and moments which act on the dynamics of the A/C on
ground. These forces and moments can be divided in five main contributions: the aerodynamic
effect, the gravity, the motor, the braking system and the wheel/road (W/R) interface. The
expression of the forces is defined by the following equation:




Fx

Fy

Fz


 =

1
2
ρSV 2

a



−Cx

Cy

−Cz


 +




−MA/Cgsin(θ)
MA/Cgsin(ψ)cos(θ)
MA/Cgcos(ψ)sin(θ)


 +




Peng

0
0


 +




Tbr

0
0


 + FW/R (3.10)

The aerodynamic effects characterized by non-linear contributions depend on A/C shape. It is
defined by ρ (density of air), S (reference surface), Va (aerodynamic speed) and the aerodynamic
coefficients Cx, Cy and Cz which depends on the rudder input θr. The modelling and the
identification of this contribution is very complex and [Lavergne et al., 2004] proposes the use of

79



Chapter 3. Aircraft on ground automatic guidance: from actuator control to path
following

a NN to describe the aerodynamic effects. Thrust engines Peng is obtained based on the reference
engine speed N1 ref [Yamane et al., 1997], [Duprez, 2004]. The braking torque Tbr results from
the friction between the rotors and the stators of the braking system when they are subject to
a pressure Pbr ref . This pressure effort may be produced by a hydraulic circuit, pistons and
servo valve in the case of hydraulic braking system or by a set of motors and gears in the case
of electric braking system [Jacquet, 2008]. The forces at the W/R interface corresponds to the
forces generated by the tyres and the ground reactions. This contribution is very difficult to
model due to non-linear dependencies in the nose wheel tyre slip angle βNW and the main wheel
tyre slip angle βMW . Then, a lot of parameters act on the estimation of the W/R forces and
moments like the vertical load Fz applied on the gears, the runway condition (dry, wet, frozen)
or the longitudinal speed of the aircraft Vx. A detailed description of the different models and
the parameters acting on the W/R forces and moments is presented in Appendix A.

3.3.1.3 Low speed non-linear lateral A/C model

The non-linear A/C model presented in the previous section describes a lot of contributions that
are not specifically required for particular conditions discussed in the frame of this manuscript.
Indeed, in this work, the required A/C model helps to simulate the trajectory tracking algorithm
at low speed and will also be used as an observer for the NLG steering model (see Section 3.3.2.2).
So, it is possible to neglect several phenomena and to obtain a model that is adapted for low speed
manoeuvres (lower than 15m/s) like taxiing for instance. A two dimensional lateral simplified
A/C model described in [Lemay, 2008] is then considered. This model, derived from the complete
A/C model described in Section 3.3.1.2, is obtained by making the following hypothesis:

(H1): the runway is considered as horizontal then the position of the CG is fixed on the
vertical axes and contributions Vz and V̇z can be neglected,

(H2): the landing gear dampers are considered as rigid. This implies that the roll and
pitch phenomena are not taken into account resulting in p = 0 and q = 0,

(H3): the limitation of the A/C longitudinal speed Vx helps to neglect the aerodynamic
effects, indeed this contribution is minor compared to the W/R forces,

(H4): the actuator representations are neglected. For example the NLG wheel angle θw

is an input of the model and the engine and braking systems are simplified and a virtual
thrust drives the A/C longitudinal speed Vx.

This low speed non-linear lateral A/C model is obtained by applying the first Newton’s law
of motion on the ~X and ~Y axes and the second Newton’s law of motion on the ~Z axis (cf. Figure
3.13). This model has the particularity to consider the load distribution due to centrifugal effects.
The W/R is modelled by the use of the well-known Pacejka tyre model [Pacejka, 2006], presented
in Appendix A; a non-linear representation of the forces generated by the tyre.

This model is well-suited for simulation purposes insofar as it is able to reproduce the A/C
dynamics in the considered situations. However, synthesizing controllers from non-linear models
is often a difficult task. That is why, the following section presents the equations of a simplified
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A/C model. The proposed longitudinal speed dependent A/C LPV model is adapted for the
synthesis of model-based controllers.

Finally, considering the fact that the A/C is composed of two wheels on the nose gear and
two wheels on each main gears, the description of the low speed non-linear lateral A/C model is:





V̇y =
1
M

(2 · Fy NW (βNW ) + 4 · Fy MW (βMW ))− Vxr

ṙ =
1

JA/C
(2 · LNW · Fy NW (βNW )− 4 · LMW · Fy MW (βMW ))

(3.11)

with Fy NW () and Fy MW () the functions which describe the Pacejka model and the side slip
angles βNW and βMW are expressed by:

βNW = θw − atan

(
Vy + r · LNW

Vx

)
(3.12)

and
βMW = −atan

(
Vy − r · LMW

Vx

)
(3.13)

3.3.1.4 Bicycle model

The bicycle model is a well-known model mainly used in automotive and aircraft domains
[Caroux, 2007] and [Duprez, 2004]. This model is based on the previously mentioned hypothesis
(H1) to (H4) and is characterized by two more hypothesis:

(H5): the aircraft is defined as symmetrical about its longitudinal axis, and a virtual wheel
located at the middle of the rear axle is considered. In this way, the aircraft geometry is
similar to that of a bicycle,

(H6): only low slip angles are considered. This permits to make two major simplifications:
the expression of the tyre slip angle is linearised and the linear contribution of the tyre
forces are taken into account (cf. Appendix A).

Hypothesis (H5) can be done insofar as the roll dynamics, that means the movement around
the lateral axis are relatively thin. Hypothesis (H6) related to tyre forces considers only low slip
angle which is conceivable when the lateral dynamics are not larger than 3m/s2. Finally, based
on the model presented in equation (3.11) and considering the two previous hypothesis (H5) and
(H6), a LPV bicycle model is proposed.

Based on Appendix A and considering hypothesis (H6), the tyre slip angle is simplified such
that:

βNW = θw −
(

Vy + r · LNW

Vx

)
(3.14)

and
βMW = −

(
Vy − r · LMW

Vx

)
(3.15)

and the tyre contributions Fy NW and Fy MW are expressed by:

Fy NW = CSNW · βNW (3.16)
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and
Fy MW = CSMW · βMW (3.17)

with CSNW and CSMW which correspond respectively to the cornering stiffness of the nose and
main landing tyres. Finally, the aircraft bicycle model is described by:





V̇y =
−(2 · CSNW + 4 · CSMW )

M · Vx
Vy + · · ·

· · ·+
(−(2LNW CSNW − 4 · LMW CSMW )

M · Vx
− Vx

)
r +

2 · CSNW

M
θw

ṙ =
−(2 · LNW CSNW − 4 · LMW CSMW )

JA/C · Vx
Vy + · · ·

· · ·+
(−(2 · L2

NW CSNW + 4 · L2
MW CSMW )

JA/C · Vx

)
r +

2 · LNW CSNW

JA/C
θw

(3.18)

The bicycle model will be used for two main purposed:

• the synthesis of H∞ controllers for NLG steering purposes (see Section 4.2 ),

• the prediction of the MPC algorithms dedicated to path following (see Section 5.6)

3.3.2 Nose landing gear modelling

3.3.2.1 Introduction

This section deals with the modelling of the NLG. As it can be read in Section 4.2, the NLG
control requires models for simulation purposes or for the synthesize of the controllers. Then,
three models are used:

• a non-linear model integrating a non-linear A/C model (previously presented in Section
3.3.1.2) to describe the W/R interface. This model is presented in Section 3.3.2.2 and will
be used for the simulation validation of the NLG control laws.

• a LPV model based on the A/C bicycle model from Section 3.3.1.4 to estimate the moment
and forces and the W/R interface. This model is presented in Section 3.3.2.3 and will be
used for the synthesis of H∞ controllers.

• a simple LPV model which describes the W/R interface with a proportional relationship
between the wheel angle and the resistive torque Tr; this helps to reduce the controller
synthesis complexity. This model is presented in Section 3.3.2.4.

3.3.2.2 Non-linear NLG steering model based on an A/C model

The input of the NLG steering system is the electromechanical torque Tem and the output is the
wheel angle θw around the vertical axis. The wheel angle will be considered to be equal to the
sliding angle since the wheel can not rotate around its fixing axis. The “upper part”, that means
the electromechanical actuator is described by the following equation:

Jmθ̈m = Tem − 1
2NcNw

Tleg − Tlos, (3.19)
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with Tlos the mechanical losses of the actuator (friction torque in direct or inverse operating
conditions). Tleg is defined by:

Tleg = 2Nw

(
θm

Nc
−Nwθw

)
K. (3.20)

with Nc and Nw two reduction ratios. Then, the “lower part” which integrates the turning tube,
the sliding tube and the wheel is described by two rotating masses such that:





θ̈t =
1
J1

(
Tleg − k(θt − θw)− c(θ̇t − θ̇w)

)

θ̈w =
1
J2

(
k(θt − θw) + c(θ̇t − θ̇w) + Tr

) (3.21)

The main problem of the NLG steering model lies in modelling the resistive torque Tr gener-
ated by the tyres at the W/R interface. In particular, the estimation of the nose wheel slip angle
βNW which is defined by the angle between the wheel direction and the wheel speed vector, is
essential. It helps to calculate the forces and moments which create the resistive torque at the
W/R interface. The proposed model is based on the estimation of the nose wheel slip angle using
a non-linear A/C model which takes account of the non-linearities at the tyre/ground interface.
This approach is presented in Figure 3.14.

NLG
mechanical

model

Nonlinear
A/C

model

Tem

θw

βNW

Nose Landing Gear Steering Model

Tr Resistive torque

model

Figure 3.14: Structure of the NLG model integrating an A/C model

The non-linear A/C model, presented in Section 3.3.1.3, allows the estimation of the nose
wheel slip angle βNW as a function of the wheel angle θw. This estimation is then used as
an input of the resistive torque model and helps to obtain the resistive torque Tr at the W/R
interface.

Considering the fact that the NLG is composed of two tyres, the resistive torque is formulated
by:

Tr = 2 ·Mz NW (βNW )− 2 · e · Fy NW (βNW ). (3.22)

This equation involves the tyre self-aligning moment Mz NW , the lateral tyre force Fy NW and
the caster length e which corresponds to the distance between the landing gear axle and the axle
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which passes through the wheel centre. Both functions Mz NW (.) and Fy NW (.) are expressed
using the well-known Pacejka tyre model [Pacejka, 2006] and need the knowledge of the slip angle
βNW on the nose wheel. βNW is obtained with the states of the non-linear A/C model, Vy (the
lateral speed at the A/C centre of gravity (C.G.)) and r (the vertical rotational speed) and Vx

(the longitudinal speed at the C.G) which is the varying parameter. The expression of βNW ,
based on the non-linear A/C model, presented in equation (3.11), has earlier been described in
equation (3.12).

The obtained model is a non-linear NLG steering model. It considers an improved descrip-
tion of the electromagnetic behaviour of the motors. The mechanical transmission is described
accurately considering its efficiency and the mechanical losses (cf. equation (3.19)). The resistive
torque is obtained by an estimator which uses the non-linear A/C model presented in Section
3.3.1.3 and including non-linearities of the tyres thanks to a Pacejka tyre model. However, this
non-linear model is incongruous for control laws synthesis because of its complexity; it is difficult
to synthesize a controller when the synthesis model includes several non-linearities. Despite this
drawback, this model is used for two main purposes:

• it is a reference and realistic model, permitting to test the proposed controllers during
simulations,

• it helps to obtain the two LPV models used for the synthesis of the controllers which are
presented in Sections 3.3.2.3 and 3.3.2.4.

The coming sections present two LPV models derived from this detailled NLG steering model.
The first model is based on the structure presented in Figure 3.14, but the A/C and tyre non-
linearities are neglected. This model estimates the resistive torque using an A/C LPV model
which depends on the A/C longitudinal speed. The second model aims at reducing the structure
presented in Figure 3.14 and notably the resistive torque estimation. Then, this model considers
a simple proportional relation between the wheel angle and the resistive torque and thus neglects
the effect of the wheel slip angle.

3.3.2.3 LPV NLG steering model based on an A/C model

Synthesizing controllers from non-linear models is often a difficult task. That is why, the equa-
tions of the actuator are simplified and a LPV model based on the estimation of the resistive
torque using a longitudinal speed dependent A/C LPV model is developed. Then, this model is
simplified insofar as some state variables and the non-linearities of the tyres are neglected.

Considering equation (3.19) which models the actuator, the non-linear contribution Tlos is
neglected and the simplified modelling of the electromechanical actuator becomes:

Jmθ̈m = Tem − 1
2NcNw

Tleg (3.23)

with Tleg defined in equation (3.20). This simplification can be done insofar as Tem and
1

2NcNw
Tleg are predominant compared with Tlos.

Contrary to the shimmy phenomenon, where the dynamics of the compass have to be consid-
ered (cf. Section 3.3.3), for the steering application, the positions of the turning tube θt and the
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wheel θw could be considered as similar. Then, equation (3.21) can be simplified and becomes:

θ̈w =
1

J1 + J2
(Tleg + Tr) (3.24)

Then, the proposed LPV model is based on the structure defined in Figure 3.14. For the
steering application, the non-linear A/C model and the non-linear resistive torque contribution
are linearised as it has been done in Section 3.3.1.4. Indeed, the tyre contribution is frequently
limited by its linear part when the slip angle βNW is low (< 5◦), which is the case for the
considered application. Then, the two functions Mz NW (.) and Fy NW (.) of equation (3.22) are
expressed using the self aligning stiffness SASNW and the cornering stiffness CSNW such that:

Tr = 2 · SASNW · βNW − 2 · e · CSNW · βNW (3.25)

Moreover, small slip angles can be considered and similarly to equations (3.14) and (3.17), the
nonlinearities due to the atan function are neglected. The A/C model that results from this
simplification is described in equation (3.18).

Finally, the obtained model has 1 input Tem, 6 states θw, θ̇w, θm, θ̇m, Vy and r and can be

expressed as an LPV model with two varying parameters ρ1 = Vx and ρ2 =
1
Vx

such that:





Jmθ̈m = Tem − 1
Nc

(
θm

Nc
−Nwθw

)
K

(J1 + J2)θ̈w = 2Nw

(
θm

Nc
−Nwθw

)
K + 2SASNW (θw − ρ2 (Vy + rLNW ))− · · ·

· · · − 2eCSNW (θw − ρ2 (Vy + rLNW ))

V̇y =
−ρ2(2CSNW + 4CSMW )

M
Vy + · · ·

· · ·+
(−ρ2(2LNW CSNW − 4LMW CSMW )

M
− ρ1

)
r +

2CSNW

M
θw

ṙ =
−ρ2(2LNW CSNW − 4LMW CSMW )

JA/C
Vy + · · ·

· · ·+
(−ρ2(2L2

NW CSNW + 4L2
MW CSMW )

JA/C

)
r +

2LNW CSNW

JA/C
θw

(3.26)

3.3.2.4 Simple LPV NLG steering model

The above presented LPV model is based on a complex structure. Indeed, the accurate estimation
of the resistive torque at the W/R interface requires the use of an A/C model which must consider
the contributions of the main landing gears. The two main drawbacks of such modelling are the
required knowledge of the tyres on the main gear and the increase of the model order which
is an important characteristic insofar as it is directly linked with the order of the synthesized
controller in the case of H∞ control theory. As a consequence, a simplified model is proposed.
This simplified solution makes the realistic assumption of the conditions of its use that the
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resistive torque Tr is only proportional to the wheel angle θw via a longitudinal speed dependent
parameter Kr(Vx) such that:

Tr = −Kr(Vx) · θw (3.27)

As presented in Section 1.4.2, two approaches help to identify LPV models, the global ap-
proach and the local approach. The identification of the simple LPV NLG steering model is
based on the local approach: Kr(Vx) is obtained through simulations based on the reference
model presented in Section 3.3.2.2. The identification method is divided into three steps: the
gridding of the varying space Vx, the identification of the parameter Kr for each value of the
varying parameter and finally an interpolation. The varying parameter Vx is gridded from 5m/s

to 30m/s with a step of 5m/s. Based on the detailed model, the parameter Kr is identified for
each value of Vx. Finally, the different models are interpolated. Figure 3.15 presents the relation
between Vx and Kr obtained by this approach. The interpolation is obtained with a second order
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Figure 3.15: Interpolation results of the simple LPV model

polynomial such that:
Kr(Vx) = a2V

2
x + a1Vx + a0 (3.28)

In this model, the actuator description is also simplified and the dynamics of the compass
are not taken into account, similarly to the propositions made in Section 3.3.2.3. Finally, the
simple model has 1 input Tem, 4 states θw, θ̇w, θm, θ̇m and can be expressed as an LPV model
with ρ = Kr(Vx), the varying parameter. Based on equations (3.19), (3.20), (3.24) and (3.27),
the equations of this simple LPV NLG steering model becomes:





θ̈m =
1

Jm
Tem − K

N2
c Jm

θm +
KNw

NcJm
θw,

θ̈w =
K

N2
c (J1 + J2)

θm −
(

ρ

J1 + J2
+

KNw

Nc(J1 + J2)

)
θw

(3.29)
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3.3.3 Shimmy modelling

The description of the shimmy phenomenon has been done in Section 3.2.2.2. This section
aims at presenting the equations of the model that permit to simulate the unstable oscillations
characterising this phenomenon.

3.3.3.1 Description of Somieski’s model

The input of the model is the control torque Tem which is provided by an electromechanical
actuator here and the output of the model is the yaw angle of the wheel θw about its vertical
rotating axis. It is important to insist on the fact that the study of the shimmy phenomenon,
proposed in this manuscript, has been done as an initiatory study. The aim is not to validate the
proposed control solutions, presented in Section 4.3, based on real tests. However, the objective
is to study the feasibility of active shimmy damping (that means the damping of the shimmy
oscillations with a controlled system). Then, the representation of the actuator considered for
simulation purposes is based on a simple description. Indeed, the actuator developed in the
frame of the DRESS project, presented in equation (3.19) is not taken into account. The link
between the actuator and the turning tube is assumed to be rigid and the actuator dynamics
only consider the viscous friction phenomena.

Based on the discussion about the actuator modelling and applying Newton’s second law to
the rotating movements of the actuator and the NLG, it is possible to leads to the following
equations: {

J1θ̈t = Tem −Baθ̇t − k(θt − θw)− c(θ̇t − θ̇w)
J2θ̈w = k(θt − θw) + c(θ̇t − θ̇w) + M3 + M4

(3.30)

where M3 is the tyre moment caused by the lateral tyre deformations due to side slip and M4

is the tyre damping moment related to the yaw rate, J1 is the inertia of the turning tube plus
the inertia of the actuator, J2 is the inertia of the sliding tube and Ba is the viscous friction
constant of the actuator. This landing gear description seems very close to the model presented
in equation (3.21). Nevertheless, two main differences have to be noticed:

• the actuator description is simplified because its dynamics are not considered,

• the W/R interface is modified insofar as an important difference lies in the modelling of
the tyre slip angle. The contribution of the tyre damping M4 is considered because of its
influence on the shimmy phenomenon.

Considering the tyre dynamics, the following equations summarize the non-linear characteristics
of the tyre, which are discussed in [Somieski, 1997] and presented in details in Appendix A:

M3 = 2Mz NW (βNW )− 2eFy NW (βNW ). (3.31)

Fy NW =

{
cF βNW Fz

cF δFzsign(βNW )
for |βNW | ≤ δ

for |βNW | > δ
(3.32)

Mz NW =





cMFz
αg

180
sin

(
180
αg

βNW

)

0

for |βNW | ≤ αg

for |βNW | > αg

(3.33)
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M4 =
κ

Vx
θ̇w (3.34)

ẏl +
Vx

σ
yl = vθw + (e− a)θ̇w (3.35)

atan(βNW ) ≈ βNW =
yl

σ
(3.36)

where Mz and Fy are respectively the self aligning torque and the lateral side force of the tyre,
Fz is the vertical load applied on the NLG, Vx is the aircraft longitudinal speed, yl is the lateral
displacement of the tyre footprint. This lateral displacement is obtained using the elastic string
theory defining the tyre lateral deformation as a stretched elastic string. Finally, βNW is the slip
angle of the tyre, e is the caster length, a is half of the contact length and cFα , cMα , κ, δ, αg, σ

are constants defined in [Somieski, 1997].
It is important to note that there are two non-linearities in the model, both related to the

elasticity of the tyres. These non-linearities may cause limit cycles and instabilities. Therefore,
the nose landing gear is rather difficult to control.

3.3.3.2 State space representation of Somieski’s model

A state space representation of the NLG model is needed to design the adaptive damping con-
troller. By choosing the state variables x1 = θw, x2 = θ̇w, x3 = yl, x4 = θt, x5 = θ̇t and
considering the control torque Tem, the non-linear dynamics presented above can be expressed
as: 




ẋ1 = x2

ẋ2 =
k(x4 − x1)

J1
+

c(x5 − x2)
J2

+ f1(x3) + f2(x2)

ẋ3 = Vxx1 + (e− a)x2 − v

σ
x3

ẋ4 = x5

ẋ5 = −Bax5

Ja
− k(x4 − x1)

Ja
− c(x5 − x2)

Ja
+

1
Ja

u

(3.37)

where:
f1(x3) =

M3(α)
J2

=
M3(yl/σ)

J2
(3.38)

f2(x2) =
M4(ψ̇w/Vx)

J2
(3.39)

The output of the system is y = θw = x1. Hence the third derivative of the output:

y(3) = ẍ2 =
k(ẋ4 − ẋ1)

J1
+

c(ẋ5 − ẋ2)
J2

+ ḟ1(x3)ẋ3 + ḟ2(x2)ẋ2 (3.40)

Replacing the derivatives of the state variables (3.37) in (3.40), it is obvious that the input u

appears on the right hand side of the result. This means that the system has the relative degree
r = 3, and can be described by the following equation:

y(3) = a(x) + b(x)u (3.41)

where x = [x1, x2, . . . , x5]T is the system state vector, a(x) and b(x) are non-linear smooth
functions. The explicit descriptions of these two non-linear functions can be obtained after some
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mathematical manipulations. However, even if the exact expressions are calculated, they might
not accurately describe the dynamics of the system when it is operating, because of time-varying
parameters such as the vertical force Fz or tyre characteristics. For this reason, a(x) and b(x)
are considered as unknown functions, and the adaptive control theory is adopted to cope with
this uncertainty.

Nevertheless, by developing equation (3.40), it could be seen that the function b(x) does not
depend on the state variables x. Then, this expression is simplified and b(x) becomes B. Finally,
equation (3.41) can be transformed into:

y(3) = a(x) + Bu (3.42)

3.4 Conclusion

In the beginning of this chapter, the general purpose of guidance has been described and the
structure of the global control strategy divided in two loops has been detailed. The low-level
loop, presented in Section 3.2.2, is dedicated to the actuator control. This Section has presented
the shimmy phenomenon and the specifications linked to the steering aspects. Then, the elec-
tromechanical steering actuator, developed in the frame of the DRESS project which replaces
the hydraulic actuator has been described. The high level loop control, presented in Section
3.2.3 proposed through a detailed bibliography the different solutions which helps to automati-
cally follow a path. Finally, based on the drawbacks and the advantages of the geometrical and
model-based approaches, three solutions have been retained. These solutions will be developed
and Chapter 5 presents the obtained results, based on real tests.

Later in this chapter, different models which will be used to develop the control solutions
and to test them through simulations have been introduced. First, models which describe the
A/C on ground dynamics have been detailed. Then, different modelling solutions, based on LPV
descriptions, have been suggested for the description of the nose landing gear dynamics. Finally,
a non-linear model has been proposed to represent the unstable oscillations which characterize
the shimmy phenomenon. From Section 3.3.1 to Section 3.3.3, 7 models have been introduced.
To understand the utility of each model, to show where the models will be used and to clarify
the differences between the proposed models, a synthesis is presented in Table 3.4.
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Model
name

Purpose Presented
in Sec-
tion

Used
in
Sec-
tion

Utility Particularity

Non-linear
accurate
A/C model

A/C dy-
namics
description

3.3.1.2
® Introduces all the

phenomena that
have an influence
on the A/C on
ground dynamics

Complex model

Low spedd
non-linear
lateral A/C
model

A/C dy-
namics
description

3.3.1.3 4.2
Simulations pur-
poses

Obtain the nose
wheel slip angle in
the nose landing
gear model
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Model
name

Purpose Presented
in Sec-
tion

Used
in
Sec-
tion

Utility Particularity

Bicycle
model

A/C dy-
namics
description

3.3.1.4 3.3.2.3
- 5.6 • Build the

nose landing
gear model

• Predict
vehicle be-
haviour for
MPC path
following
applications

Aeronautic and
automotive appli-
cations

Non-linear
NLG steer-
ing model
based on an
A/C model

Nose land-
ing gear
model

3.3.2.2 4.2
Simulations pur-
poses

Non-linear model
coupled with an
A/C model to
obtain the slip
angle

NLG steer-
ing model
based on an
A/C model

Nose land-
ing gear
model

3.3.2.3 4.2
H∞ controllers
synthesis

LPV model with
two varying param-
eters ρ1 = Vx and

ρ2 =
1
Vx

, integrat-

ing an A/C model
to estimate the side
slip angle

Simple
NLG steer-
ing model

Nose land-
ing gear
model

3.3.2.4 4.2
H∞ controllers
synthesis

LPV model with
one varying param-
eter (the resistive
torque is propor-
tional to the wheel
angle)

Shimmy
model

Shimmy
modelling

3.3.3 4.3
Simulate the
shimmy phe-
nomenon

Improvement of
the Somieski model

Table 3.4: Synthesis of the different models
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Chapter 4

Control of the aircraft nose landing gear
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4.1 Introduction

In Chapter 3, the context of the study has been presented, insofar as the low-level loop and
the high-level loop are accurately described and the models required for control purposes are
introduced. In this chapter, the low-level loop control and particularly the control of the NLG
is detailed. Two main applications are described in this chapter:

• nose landing gear steering control (see Section 4.2);

• shimmy control (see Section 4.3).

On the one hand, in Section 4.2, the robust control solution which gives the possibility to
steer the NLG is presented ([Pouly et al., 2009b], [Pouly et al., 2009d] and [Pouly et al., 2009c]).

Firstly, this section begins with the motivations for the choice of robust control theory.
Indeed, based on the theoretical description of Section 2.2 and the different documents available
in the literature notably [Scherer et al., 1997], [Gahinet and Apkarian, 1994], it seems that the
synthesis based onH∞ theory is adapted for the considered application of the aeronautic domain.
This is clearly extended in Section 4.2.1.

Secondly, the particularity of H∞ theory which needs the use of weighting filters to synthesize
the controller is mentioned; their functions and the methods which help to obtain them are
defined based on classic design rules [Ortega and Rubio, 2004] and [Hu et al., 2000]. Then, a
tuning method which optimizes the choice of these weighting filters is proposed. Indeed, based
on a genetic algorithm [Goldberg, 1989] and [Wang et al., 2003], it will be shown in Section 4.2.2
that this optimization methodology facilitates the design of the controller by decreasing the time
required for the tuning step and by integrating for example specifications defined in the time
domain.

Then, a discussion concerning the structure of the synthesis model is proposed in Section
4.2.3. Three structures respectively called “usual” structure (see Section 4.2.3.1), structure using
an improved synthesis model (see Section 4.2.3.2) and structure using a synthesis model with 2
inputs (see Section 4.2.3.3) are proposed. These different structures are evaluated and compared
to finally lead to a choice which corresponds to the only structure which helps to reach the
specifications.

Next, simulation results based on gain scheduling and H∞ theory are proposed. After
the definition of the different test scenarios in Section 4.2.4.2, two gain scheduling techniques

94



4.1. Introduction

([Theodoulis, 2008] and [Apkarian et al., 1995]) using each two synthesis models are presented.
These different control solutions are based on the previously selected structure requiring 2 inputs
(see Section 4.2.3.3) such that four different control solutions are synthesized and evaluated:

• Classic gain scheduling, based on an output blending approach (see Sections 4.2.4.3 and
4.2.4.4):

– the synthesis model based on the LPV NLG steering representation which uses an
A/C model (see Section 3.3.2.3),

– the synthesis model that considers the NLG representation based on a proportional
relation between the resistive torque and the wheel angle (see Section 3.3.2.4).

• Modern gain scheduling, based on a polytopic approach (see Sections 4.2.4.5 and 4.2.4.6):

– the synthesis model based on the LPV NLG steering representation which uses an
A/C model (see Section 3.3.2.3),

– the synthesis model that considers the NLG representation based on a proportional
relation between the resistive torque and the wheel angle (see Section 3.3.2.4).

Moreover, in Section 4.2.5, a discussion which aims at presenting the tools available for controller
order reduction is proposed. Indeed, due to the well-known drawback of H∞ theory which
synthesizes high order controller, solutions to reduce the controller order are required. For this
purpose two main solutions are discussed. On the one hand, the MOR tools, presented in
Section C, such as balanced truncation tools, are applied to reduce the order of the controller
synthesized in Section 4.2.4. On the other hand, a H∞ synthesis algorithm which gives the
possibility to consider the controller constraints (notably the dimension of the synthesized state
space controller) during the synthesis step is studied [Burke et al., 2005].

Finally, in Section 4.2.6, the developed algorithms are tested on the test bench developed in
the frame of the DRESS project. The difficulties, encountered during the transfer between the
simulation step and the validation step on bench will be presented.

On the other hand, in Section 4.3, the control of the shimmy phenomenon is done
through an initiatory study ([Pouly et al., 2009a], [Pouly et al., 2008b], [Huynh et al., 2008],
[Pouly et al., 2008c] and [Pouly et al., 2008a]). The objective consist in analysing the impact
of the new electrical steering system on the shimmy phenomenon and studying different meth-
ods for shimmy damping. The proposed solutions are limited to simulation validation and the
algorithms are not implemented on the DRESS test bench for technical as well as for security
reasons1. This section begins with the presentation of different scenarios for which the shimmy
phenomenon appears. Then, three controllers, based on fuzzy adaptive theory, are presented and
simulation tests are proposed. Firstly, Section 4.3.3 describes the design of two solutions based
on state feedback and then presents the obtained simulation results. One solution considers a
control law based on a direct structure which means that the fuzzy system is adjusted directly
to ensure the control objectives while the second solution is based on an indirect structure where
the fuzzy system helps to estimate the plant dynamics and then calculate the control law. Sec-
ondly, in Section 4.3.4, a control solution which only requires the measure of the wheel angle is

1It is quite difficult to simulate on a test bench the conditions of the shimmy phenomenon
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detailed. After the description of the different values of the controller parameters, the results
obtained with this output feedback control solution are presented. The main objectives of this
section are:

• to test the feasibility of active shimmy control by using an electromechanical actuator,

• to evaluate if a control solution is able to actively damp the shimmy oscillations,

• to size the required actuator in term of bandwidth or amplitude if a control solution is
satisfying.

4.2 Nose landing gear steering control

4.2.1 Motivations for the H∞ synthesis choice

The choice of the theory used to synthesize the controller is an important step in the development
of a control solution. In the literature, despite a lot of similitudes in the control solutions, the
study of the specificities of each solutions has to be done. Indeed, it is possible to adapt the
control solution to the particularities of the model as it was mentioned in Chapter 2. Here, the
nose landing gear steering control is presented. Based on the NLG model presented in Section
3.3.2 and the objectives of the closed loop system described in Section 3.2.2.1, a control solution
based on the H∞ is adopted.

The H∞ control solution has the advantage to consider the non-linearities of the plant.
Particularly, using a polytopic formulation of the model, a non-linear controller is synthesized.
Likewise, the obtained controller is on the polytopic form. This method gives the possibility to
introduce the non-linearities in the control solution with simplicity.

In the early stages of the control solution development, it is important to keep in mind the
objectives of the controller to be developed and the specificities of the system to be controlled.
Indeed, the H∞ method has the advantage to synthesise a simple controller expressed on the
state space form. The implementation of such controller is very easy insofar as the tools which
help to develop embedded software permit to implement these simple controller structures. The
comparison of such a solution with the non-linear adaptive methods proposed in Section 2.3
shows clearly the interest of the industrial for such a simple structure. Moreover, this control
solution is well adapted for systems with fast dynamics. The simple matrix operations, insofar
as the size of those is not too high, can be implemented easily in real-time. In comparison with
MPC, which needs a lot of calculation power to allow the on-line optimization, H∞ helps to
reduce the A/C on-board calculation equipment.

The consideration of the model of the system for the synthesis of the controller (frequently
named as model-based control) is very interesting. On the one hand, it helps to have a precise
formulation of the problem. Then, it is possible to consider stability and performance constraints
based on a priori knowledge of the system. On the other hand, it facilitates the evolution of
the control law for other systems close to the considered one. For instance, if a controller is
developed for the NLG of an Airbus A320 A/C, when a similar electromechanical NLG actuator
will be developed for an Airbus A350, it will be sufficient to model and identify the landing gear
and the actuator systems and then use the obtained model to synthesize the controller.
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Finally, considering the industrial interest, it is possible to develop an automatic tuning of
the control solution. Based on the specifications, the controller can be synthesized, which means
that an optimal structure of the synthesis model is obtained and the tuning parameters of the
controller are adjusted. This clearly facilitates the time required for the tuning of the controller.

4.2.2 Optimal tuning of the H∞ control solution

4.2.2.1 Introduction

The weighting filters used in H∞ synthesis determine the controller. The design of appropriate
weighting filters helps to satisfy the required specifications. For instance, considering the filter
commonly named We which has the tracking error as an input, it enables to specify the acceptable
error signal. Based on the definition of this weighting filter, the characteristics of the close
loop system will evolve and particularly the error signal. If We is chosen large and broad (an
important gain with a high cut-off frequency), the signal error will be small, but it is obvious
that a compromise has to be reached.

The suitable selection of weighting filters which must incorporate stability and performance
requirements is difficult to obtain. A basic method based on a trial and error process is often
used. Despite the importance of the weighting filters, just a few references in the literature deal
with the definition of design rules to obtain the weighting filters. [Hu et al., 2000] propose a
basic form of performance weighting filters taking account of disturbances rejection and steady
state error. For the control signal weighting filter, the position and rate constraints are con-
sidered by the use of characteristic responses of the actuator signal. [Ortega and Rubio, 2004]
suggests a methodology for the case of S/T mixed sensitivity approach. This case aims at de-
signing a controller which satisfies simultaneously performance and robustness specifications2.
The properties of the weighting filter WT , related to the transmission function, are suggested in
particular by the nature of uncertainties. The design of the weighting filter WS , which imposes
the performances conditions to the system, is based on the required behaviour of the system.
Finally, these methods give a first advice for the design but the trial and error process is required
anyway.

In order to facilitate the design of H∞ controllers, the tuning of the weighting filters could
be formulated as an optimization problem [Sandou et al., 2008], [Sweriduk et al., 1998]. In this
method, the weighting filters are expressed in terms of variable parameters and an optimiza-
tion algorithm helps to identify these parameters. Based on this tuning, it is possible to de-
fine the controller and the augmented system structure. For instance, [Sandou et al., 2008]
translates the performances to be reached, that means the frequency characteristics of the
open-loop (bandwidth, gain margin, phase margin, module margin) or the classic temporal
closed-loop requirements, into an optimization problem. Then, the particle swarm theory
[Eberhart and Kennedy, 1995] is used to solve the optimization problem. The main drawback of
such an approach is to compare the different specifications. In other words, a method is required
to compare the frequency responses with the time responses. Here, the authors chose to use very
hard penalty functions. Then, this consideration aims at requiring that all the specifications

2The sensibility transfer function S(p) from the setting to the error and the transmission function T (p) from
the setting to the output are used in the frame of the S/T mixed sensitivity approach.
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must be satisfied and no compromise is considered. In [Sweriduk et al., 1998], the authors de-
cided to simply consider one temporal specification and use a genetic algorithm (GA) to obtain
the optimal weighting filters. It has been decided to be in favour of the method proposed by
[Sweriduk et al., 1998]. This choice is based on two main arguments:

• GA method is a well-known global search technique and the difficulties introduced by the
use of the particle swarm theory are not necessary (notably the complex implementation
compared with GA),

• two main specifications are required in the frame of the DRESS project (cf. Section 3.2.2.1)
and the temporal one (Specification 2) is the most difficult to reach. If this specification is
satisfied, the other is satisfied too.

4.2.2.2 Weighting filters tuning using Genetic Algorithms

GA [Goldberg, 1989], frequently used to solve control engineering problems [Wang et al., 2003],
help to obtain optimal parameters to solve an optimization problem. The schematic of the
working principle of a GA is presented in Fig. 4.1. The GA is based on a population composed
of several individuals in a species, evolving in an environment following an iterative process. This
population is designed to keep alive its species in its environment. To do this, it tries to adapt
itself. In this case, each individual is more or less adequate to solve the problem of survival.
The first step consists in initializing the population. In the frame of the considered application,

Initialize population

Condition ?

Selection

Crossover

Mutation

t = t + 1

end

NOK

OK

Figure 4.1: Working principle of a GA

it has been decided to create a population composed of 50 individuals (this values has been
chosen after empiric tests). Each individual is composed of genes which correspond to different
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parameters to optimize. Values of the genes are initialized randomly according to the definition
spaces of the parameters to optimize. Individuals form a population which represents all the
potential solutions to the optimization problem. The individuals in the population are evaluated
according to a fitness function, a particular function which depends on the problem to solve.
This function returns, based on one individual of the population, a single numerical fitness. This
latter represents the ability of the individual to solve the optimization. The fitness function helps
to rank the different member of the population. Then, as presented in Figure 4.1, a condition
based on a termination criterion, is defined to let the population continue its evolution. If the
termination criterion commonly based on a particular value of the fitness function or a process
iteration number is validated, the process is stopped. In the application presented below, it has
been decided to set the number of maximum process iteration number to 200. The iterative
process is composed of three main steps, the selection, the crossover and the mutation. The
selection aims at keeping a part of the existing population before building the new population.
The selection step of the GA used to obtain the optimal weighting filters keeps only the best
individual (one who has the best fitness value) and tries to improve the population by changing
all the other individuals of the population. Two evolution mechanisms help to improve the
population, the crossover and the mutation. The crossover is a sexual reproduction, it takes
two individuals, cuts their genes at some randomly chosen position to produce two “head” parts
and two “tail” parts. The “tail” parts are swapped over to produce two new individuals. This
step is repeated for all the individuals which are not selected. This evolution mechanism which
does not permit to create new genes is followed by the mutation. This latter is an asexual
reproduction mechanism which aims at randomly altering one part of the gene. The crossover
helps to explore rapidly a search space while the mutation provides a small amount of random
search. Two parameters characterize the reproduction mechanism, the crossover probability and
the mutation probability. The first defines the probability that a crossover will occur between
two individuals and the second defines the probability that a mutation will occur in any given
gene. Note that probability of the crossover is typically near 1 and 0.8 is chosen in the frame
of the presented optimization problem. Concerning the mutation probability, the chosen value
which corresponds to the typical value is 0.1.

Figure 4.2 presents the different steps of the optimization procedure developped for the
obtaining of the weighting filters. The first point is to define the objective which must be

+

-

Closed loop

system

Ideal

model

|e|
∫

|e|

Genetic
algorithm

Weighting

Filters

Controller
synthesis

Input

signal

θw ref

f

e

θ̇w ideal

θ̇w

Figure 4.2: Weighting filters optimization technique
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reached. This objective results in the description of the input signal (θw ref ) and the ideal
model which helps to have θ̇w ideal. In the frame of the presented application, based on the
specifications provided by the A/C manufacturers, the input signal θw ref is a ramp in position
and the ideal model is obtained by searching a transfer function which stays between the two
lines of the template (cf. Specification 2 (3.2.2.1). Then, the input and the ideal model help
to obtain the ideal response that the controlled system should reach. This output of the ideal
model is compared with the output of the closed-loop system, giving the error signal e. The
closed-loop system is composed of the system with the H∞ controller. The synthesis of the
controller is obtained by expressing the weighting filters in terms of free parameters Ki which
must be optimized. For example, as it will be detailed further, the weighting filter We specifying

the penalty on the control signal becomes We =
K1s + K2

K3s + K4
. To quantify the difference between

the ideal model and the closed-loop system, the integral of the absolute error is calculated and
used by the GA as a fitness function (f). Based on this fitness function, the optimization
algorithm tries to provide suitable parameters Ki which reduce the fitness value. Finally, the
free parameters are used to define the weighting filters and a new closed-loop system is obtained.

4.2.3 Nose Landing Gear steering control based on a LTI system

The optimal tuning of the H∞ control solution based on a GA approach helps to obtain the
optimal “generalized” model P. This section presents three different “generalized” models P,
based on different structures of the weighting filters and the use of the model of the system M
presented in Section 3.3.2.3. Thus, this optimization procedure has two main objectives:

• to define an optimal structure of the “generalized” model P (here, only structure of the
weighting filters is optimized, the model of the system M is not changed in this section),

• to obtain the optimal definition of these weighting filters.

Particularly, the results presented in this section aim at identifying the value of two weighting
filters, We for the acceptable error signal (the difference between the wheel angle reference θw ref

and the wheel angle θw) and Wu for the penalty on the control signal. They are expressed

in terms of free parameters such that We =
K1s + K2

K3s + K4
and Wu =

K5s + K6

K7s + K8
. So, the GA

must optimize the 8 parameters K1 to K8. To perform the optimization, the input signal (see
θw ref in Figure 4.2) is a ramp in position, with a slope of 10◦/s, which corresponds to the
specification 2 (cf. Section 3.2.2.1). The fitness function f is evaluated when the simulation

ran for 1.5s. The ideal model is defined in terms of a transfer function
θ̇w ideal(s)

θw(s)
such that

Gideal(s) =
355.3s

s2 + 30.16s + 355.3
. As mentioned previously, this ideal model has been identified

based on the specification defined in Figure 3.7. Indeed, the response of Gideal(s) for a ramp
stays between the maximum and minimum plots defined in the specification.

The following will present three different model synthesis structures. The structures have
been developed successively. The drawbacks of each structure have been defined and solutions
have been proposed to improve the results. Finally an optimal “generalized” model P, to the
extent it complies with the specifications, has been adopted.
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Table 4.1 summarizes the different simulations which are performed in Sections 4.2.3.1, 4.2.3.2
and 4.2.3.3 and the conditions under which they are made.

Section Structure
Model of the
system M

Fixed weighting
parameters

Optimized weight-
ing parameters

4.2.3.1
“Usual” 1-input
structure

LPV NLG steer-
ing model based
on an A/C model
(cf. Section
3.3.2.3)

Wr We, Wu

4.2.3.2

1-input struc-
ture with ideal
model weighting
filter

LPV NLG steer-
ing model based
on an A/C model
(cf. Section
3.3.2.3)

Wr, Wmod, Wperf We, Wu

4.2.3.3
“Usual” 2-input
structure

LPV NLG steer-
ing model based
on an A/C model
(cf. Section
3.3.2.3)

Wr We, Wu

Table 4.1: Description of the studied structures

4.2.3.1 “Usual” 1-input structure

The H∞ controller is synthesized using one input for the controller and three weighting filters:

We and Wu, which must be optimized and Wr =
1.3

0.05s + 1
, which helps to specify the reference

signal θw ref . Such weighting filters (Wr) are generally used when the control problem requires
the tracking of a reference signal. It shapes the reference signal θw ref in terms of magnitude
and frequency. So, it is obtained considering the maximum amplitude of the demanded angle
and the maximum wheel speed defined by the technical specifications. Finally, the “generalized”
model based on a commonly used structure is called “usual” 1-input structure and is presented
in Figure 4.3.

+
-

K GWr

We Wu

θ′w ref θw ref

e e′ Tem T ′

em

θw

Figure 4.3: “Usual” 1-input structure
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Figure 4.4: Results of the optimization based on the “usual” 1-input structure

Figure 4.4 presents the results of the closed-loop system when the optimal weighting filters
are obtained. It can be seen that the specifications of the ramp position are not met: the response
of the system is not within the defined template.

4.2.3.2 1-input structure with ideal model weighting filter

To improve the response for the ramp position, this structure also considers the wheel speed θ̇w for
the controller synthesis. This quantity is not used as an additional input of the controller, which
means that its real-time measurement is not required. Indeed, the wheel speed θ̇w is compared
with the reference speed determined from the signal θw ref and the weighting filter Wmod. Finally,
this structure considers that the controller has one input and five weighting filters: We and Wu,

which must be optimized and Wr =
1.3

0.05s + 1
, which helps to specify the reference signal θw ref ,

Wmod =
355.3s

s2 + 30.16s + 355.3
, which characterizes the desired wheel speed response (this transfer

function corresponds to the ideal model presented in Figure 4.2) and Wperf = 20 which weights
the acceptable error between the wheel speed and the desired wheel speed.

Commentary It can be noticed that the same definitions are proposed for the ideal
model Gideal and the weighting filter Wmod. Nevertheless, these two
components have two completely different objectives. Gideal is used to
define the closed-loop response that must be reached in the frame of
the GA optimization process while Wmod is a weighting filter used for
the synthesis of the H∞ controller. Thus, both represent the expected
behaviour of the system, they are acting for the same objective but they
are not used at the same level.

This improved structure, called 1-input structure with ideal model weighting filter, is shown
in Figure 4.5.
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Figure 4.5: 1-input structure with ideal model weighting filter

This structure of the “generalized” model gives better results than the “usual” 1-input struc-
ture, as shown in Figure 4.6. Despite some oscillations, the response of the system remains close
to the template (the maximum amplitude is 11.2◦/s). But, after 0.6s, the response signal does
not fall within the specified template, this structure is not acceptable and must be improved.
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Figure 4.6: Results of the optimization based on the 1-input structure with ideal model weighting
filter

4.2.3.3 “Usual” 2-input structure

The two previous structures give unsatisfactory results. The main reason is the lack of infor-
mation received by the controller from the NLG system. Specifically, the controller knows the
behaviour of the “lower part” of the system through the measurement of θw; however, the be-
haviour of the “upper part”, i.e. the actuator, is not considered in the previous structures. From
this observation, structure 3 proposes to use the motor speed θ̇m as an additional input of the
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controller. The following reasons justify this choice:

• the motor speed θ̇m is easy to obtain, since it is still measured for the inner engine control
loop,

• the input torque to be applied is directly linked to the motor speed.

The H∞ controller is synthesized using two inputs for the controller and three weighting filters:

We and Wu, which must be optimized and Wr =
1.3

0.05s + 1
, which is similar to the other

structures. This synthesis model is presented in Figure 4.7.

+
- K M

Wr

We Wu

θ′w ref θw ref

e e′ Tem T
′

em

θw

θ̇m

Figure 4.7: “Usual” 2-input structure

The results presented in Figure 4.8 show that the specifications are met, despite the fact that
a slight overshoot can be noticed at time t = 0.35s. The response to a ramp position is suitable
(cf. Figure 4.9); the response of the system with the proposed control solution is very close to the
template (the maximum amplitude is 10.3◦/s while the template authorizes 10.2◦/s). Moreover,
Figure 4.9 presents the wheel angle response. A tracking error of ≈ 0.1◦ is observed, but the
specifications defined in terms of wheel speed response are respected. Now, this strategy requires
the measurement of two system states (θw and θ̇m).

Commentary The “generalized” model, based on the “usual” 2-input structure gives the
best results. As a consequence, the synthesis of the proposed controllers
uses this structure. This methodology is well-suited from an industrial
point of view. Indeed, it is possible to build the controller automatically,
based on the aeronautical specifications and the model of the system.
This method also helps to synthesize a controller when a new system is
studied. Considering the development of a new actuator for a new NLG
which has different performance characteristics, the H∞ controller can
be synthesized as soon as a model of the system is available.

This section presented an optimization principle which helps to define the structure of the
H∞ “generalized” model and to search the appropriate weighting filters. This principle is used
and extended in section 4.2.4.
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Figure 4.8: Results of the optimization based on the “usual” 2-input structure
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Figure 4.9: Obtained wheel angle response with the “usual” 2-input structure
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4.2.4 Simulation results of the gain scheduling H∞ solutions

4.2.4.1 Introduction

Section 4.2.3 presented an optimisation methodology which permits to define the “generalized”
model, by obtaining an appropriated structure (the “usual” 2-input structure is adopted) and by
defining an optimal definition of the weighting filters. This methodology has been applied for
LTI models and it will be extended for LPV models and gain scheduling controllers in the frame
of the current Section. Then, Section 4.2.4 is dedicated to the presentation of NLG steering
simulation results by the use of different gain scheduling control solutions.

Firstly, Section 4.2.4.2 reminds the two test scenarios used for the simulations validation of the
different gain scheduling control solutions. Secondly, Sections 4.2.4.3, 4.2.4.4, 4.2.4.5 and 4.2.4.6
present the different parameters required for the synthesis of the gain scheduling controllers, and
the simulation results. Thirdly, Section 4.2.4.7 discusses the obtained results and tries to propose
new approaches which may help to improve the closed-loop response of the system.

To apprehend the distinctness between the different gain scheduling control solutions, Table
4.2 proposes to summarize these solutions and to clarify their own specificities.

4.2.4.2 Definition of the test scenarios

The simulation step is a significant step in the development of the control laws. It is very
important to test drastically the capacities of the closed-loop with numerous scenarios. These
numerous simulations could give the possibility to apply the control solutions on the real test
bench with more confidence and a better knowledge of the issues.

The results of the four proposed gain scheduling controllers (classic gain scheduling and mod-
ern gain scheduling, both synthesized with the previously described LPV models) are presented
here using two different simulation scenarios:

• scenario 1: the simulation lasts 1.5s, the longitudinal speed of the A/C is constant at
Vx = 17m/s and a ramp in position is demanded (this signal corresponds to Specification
2 (cf. Section 3.2.2.1)). The aim of this simulation is to examine the response of the
closed-loop system for this restrictive specification,

• scenario 2: the simulation lasts 20s, the longitudinal speed of the A/C varies from 5m/s

to 25m/s and a sinusoidal angle with varying amplitudes is demanded. The aim of this
simulation is to analyse the behaviour of the different gain scheduling controllers in varying
parameters conditions.

4.2.4.3 Controller blending applied to the A/C-based NLG steering model

Classic gain scheduling requires the gridding of the varying parameter space. From Vx = 5m/s

to Vx = 30m/s, it has been decided to synthesize six H∞ controllers. No method permits to fix
the number of controllers which must be synthesized and a compromise between the complexity
due to a large number of controllers and the efficient gridding of the varying space must be done.
Then, the different distances Di, di and di+1 presented in Figure 2.4 are calculated numerically.

The relation between the two varying parameters ρ1 = Vx and ρ2 =
1
Vx

helps to obtain these
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Section
Model M used for
the synthesis

Gain scheduling
control solution

Specificities of the control
solution

4.2.4.3

LPV NLG steering
model based on an
A/C model (cf. Sec-
tion 3.3.2.3)

classic gain schedul-
ing, blending out-
put approach (theo-
retical aspects: Sec-
tion 2.2.3.1)

• two varying parameters

• gridded varying space

• six interpolated LTI con-
trollers

4.2.4.4
Simple LPV NLG
steering model (cf.
Section 3.3.2.4)

classic gain schedul-
ing, blending out-
put approach (theo-
retical aspects: Sec-
tion 2.2.3.1)

• one varying parameter

• gridded varying space

• six interpolated LTI con-
trollers

4.2.4.5

LPV NLG steering
model based on an
A/C model (cf. Sec-
tion 3.3.2.3)

modern gain schedul-
ing, polytopic ap-
proach (theoretical
aspects: Section
2.2.3.2)

• two varying parameters

• trapezoidal polytope
with four vertices

4.2.4.6
Simple LPV NLG
steering model (cf.
Section 3.3.2.4)

modern gain schedul-
ing, polytopic ap-
proach (theoretical
aspects: Section
2.2.3.2)

• one varying parameter

• polytope with two ver-
tices

Table 4.2: Description of the different gain scheduling control solutions

107



Chapter 4. Control of the aircraft nose landing gear

calculations. Finally, the function f =
1
x

leads to six different controllers. The weighting filters
are the ones obtained in Section 4.2.3.3 and the six controllers are synthesized with similar
weighting filters which are obtained using the optimal procedure based on GA.

The simulation results for each scenario are presented respectively in Figure 4.10 and Figure
4.11.

Time (s)

W
h
ee

l
sp

ee
d

(◦
/
s)

Response of the system

Template

0
0

2

4

6

8

10

12

0.5 1 1.5

Figure 4.10: Scenario 1 for the classic gain scheduling based on the complex model
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Figure 4.11: Scenario 2 for the classic gain scheduling based on the complex model

Classic gain scheduling based on the complex model gives satisfying results for scenario 1
(cf. Figure 4.10). Indeed, the response of the system oscillates slightly and stays close to the
template. However, the response obtained for scenario 2 is not satisfactory (cf. Figure 4.11).
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After 18s, the wheel angle moves away from the wheel angle reference; an unstable area appears.
Indeed, the stability of such control solution cannot be proved. [Rugh and Shamma, 2000]

explain that extensive simulations must be done for the evaluation of stability and performance.
Typically, stability can be assured only locally when a slow variation of the varying parame-
ter is considered and typically there are no performance guarantees. The authors insist on the
fact that controller interpolations are not stabilizing at intermediate equilibria and this leads
to situations in which instabilities in the closed-loop gain scheduled system appear. More-
over, [Liberzon and Morse, 1999] claim that the stability of all the individual subsystems is
not sufficient to be sure that the global system is stable. Conversely, even if the indepen-
dent subsystems are unstable, it is conceivable to find a particular path that stabilizes the
overall system. The authors emphasize this topic when they show through an example that
depending on a particular switching signal and from stable subsystem, the trajectories of the
switched system may render to an asymptotically stable system or to an unstable one. Fi-
nally, [Narendra and Balakrishnan, 1997] add that stability is not assured for arbitrary switch-
ing schemes, since there may be controllers which destabilize the system. Nevertheless, it is
mentioned that a large number of fixed models may be needed to assure stability and good
steady-state performance. As a conclusion, if the number of LTI controllers increases, stability
of the closed-loop system can be obtained. Yet, this large number of controllers could be harmful
for real-time implementation.

4.2.4.4 Controller blending applied to the simple NLG steering model

Classic gain scheduling is here applied with the use of the simple NLG model which considers
a proportional relation between the resistive torque Tr and the wheel angle θw. The proposed
control solution requires six H∞ controllers (as it has been chosen for the controller proposed in
Section 4.2.4.3), synthesized for the values of Kr dependent on Vx using equation (3.28). These
values vary between Kr min and Kr max and the different distances are defined by di = Kr−Kr i

and di+1 = Kr i+1−Kr. The six controllers are synthesized with similar weighting filters. These
latter are obtained using the optimization algorithm presented in Section 4.2.2 with structure 3.

The two simulation results are presented in Figure 4.12 and Figure 4.13.
The results obtained with the classic gain scheduling approach based on the proportional

resistive torque calculation are not acceptable (cf. Figure 4.12). The controller does not give a
response which remains close to the template. Moreover, the wheel angle obtained for scenario 2
is relevant at the beginning of the test (cf. Figure 4.13), but after 17s, the response of the system
moves away from the wheel angle reference; the control solution becomes unstable. Concerning
the instability observed with this control solution, the problem has been encountered previously
and a discussion has been proposed in Section 4.2.4.3.

4.2.4.5 Polytopic controllers applied to the A/C based NLG steering model

The LPV model based on an A/C model considers two varying parameters ρ1 = Vx and ρ2 =
1
Vx

.

Figure 4.14 shows the polytope used to obtain the gain scheduling controller. It is composed
of four vertices (S1, S2, S3, S4) and the choice of the αi is based on the parameter ρinter.
Generally, the αi are deduced from a system of equations. Yet, in the considered application,
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Figure 4.12: Scenario 1 for the classic gain scheduling based on the proportional resistive torque
model
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Figure 4.13: Scenario 2 for the classic gain scheduling based on the proportional resistive torque
model

three equations are available and four parameters αi have to be identified. Then, it is proposed
to use the parameter ρinter to integrate a supplementary equation. This parameter is obtained
by considering the intersection of the segment that passes through the two vertices S2 and S3 and
the trajectory of the varying parameter represented by a bold curve in Figure 4.14. Then, when
ρ1 is larger than ρinter, the system is in the triangle polytope (S2, S3, S4) and the parameter α1

is null. In the other case, the system is in the polytope (S1, S2, S3) and the parameter α4 is null.
This permits to obtain a system with the same number of equations and variables expressed by
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the following equations:
if ρ1 < ρinter then




α4 = 0
α1ρ1(S1) + α2ρ1(S2) + α3ρ1(S3) = ρ1

α1ρ2(S1) + α2ρ2(S2) + α3ρ2(S3) = ρ2

α1 + α2 + α3 = 1
if ρ1 > ρinter then




α1 = 0
α2ρ1(S2) + α3ρ1(S3) + α4ρ1(S4) = ρ1

α2ρ2(S2) + α3ρ2(S3) + α4ρ2(S4) = ρ2

α2 + α3 + α4 = 1
such that ρi(Sj) corresponds to the coordinates of the vertex Sj . The weighting filters are
obtained using the optimization algorithm presented in Section 4.2.2 using the 2-input control
structure.

Commentary It is important to notice that the weighting filters obtained in Section
4.2.3.3 are not adapted for the current structure. Indeed, the optimal
weighting filters obtained with the A/C-based NLG steering model and
considering an LTI control strategy do not permit to satisfy the specifi-
cations. This can be simply explained by the fact that the LMI system is
different for the case of classic gain scheduling and for the case of modern
gain scheduling. For the first, the system proposed in equation (2.7) is
used while the second needs to solve the system of equation (2.19). The
optimization procedure is performed again, by considering an inequality
system adapted for the polytopic case.
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Figure 4.14: Polytope of the varying parameters

The two simulation results are presented in Figure 4.15 and Figure 4.16.
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Figure 4.15: Scenario 1 for modern gain scheduling based on the A/C model torque model
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Figure 4.16: Scenario 2 for modern gain scheduling based on the A/C model resistive torque
model

The results obtained with the modern gain scheduling based on the A/C model resistive
torque calculation doest not respect the specifications (cf. Figure 4.15), insofar as important
oscillations appear on the wheel speed signal. Concerning the response of scenario 2 (cf. Figure
4.16), the wheel angle and the wheel angle reference are quite similar, this response is satisfactory.

4.2.4.6 Polytopic controllers applied to the simple NLG steering model

The LPV model based on the proportional relationship between the resistive torque Tr and
the wheel angle θw considers only one varying parameter ρ = Kr(Vx). Then, the polytope is
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composed of two vertices obtained for the extreme values of Kr which are Kr min and Kr max.
The weighting filters are obtained using the optimization algorithm presented in Section 4.2.2
using the last proposed control structure called “usual” 2-input structure.

The synthesis model which is used in this control strategy generates discussion compared to
the LPV NLG steering model based on an A/C model. Indeed, the modelling of the NLG has
been simplified and the obtained synthesis model does not represent the reality as accurately as
the NLG steering model based on an A/C model. It seems obvious that, the more the model
used for the synthesis of the controller corresponds to reality, the better the performances will be.
But the simplification of the synthesis model helps to drastically simplify the control structure.
On the one hand, the mathematical problem is easier insofar as the LMI formulation is relaxed.
On the other hand, the implementation of the control strategy is simplified.

The two simulation results are presented in Figure 4.17 and Figure 4.18.
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Figure 4.17: Scenario 1 for modern gain scheduling based on the proportional resistive torque
model

The results obtained with the proportional resistive torque based model is satisfactory. De-
spite a slight overshoot at time t ≈ 0.25s, the wheel speed signal remains inside the defined
template (cf Figure 4.17). Besides, the response obtained for scenario 2 is satisfactory (cf Figure
4.18).

4.2.4.7 Discussion

Discussion about the classic gain scheduling results

Based on these different simulations, it can be concluded that the two classic gain scheduling
solutions do not help to meet the specifications (particularly due to the instability observed after
17s for the solution based on the proportional resistive torque estimation and 18s for the solution
based on the A/C model resistive torque estimation). Figure 4.11 and Figure 4.13 show that
the wheel angle signal becomes unstable very rapidly with the two classic solutions. Moreover,
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Figure 4.18: Scenario 2 for modern gain scheduling based on the proportional resistive torque
model

based on scenario 1, it can be seen that classic gain scheduling synthesized using the A/C model
resistive torque estimation gives better results. This may be due to the better identification of
the simulation model.

Drawbacks of the classic gains scheduling results

Classic gain scheduling solution is interesting insofar as only the output of the controller is
processed and no matrix operations are required (the operations are done directly on the output
signals and the state space matrices are in this case not taken into account). Moreover, controllers
with different structures may be considered because only the outputs are summed. Thus, the well-
known drawback of the H∞ solutions which synthesize high order controllers is not important:
the different controllers are reduced separately. However, this gain scheduling method presents
two main drawbacks. On the one hand, numerous controllers must be synthesized to follow the
dynamics of the system correctly. For NLG control, six H∞ controllers are interpolated. On
the other hand, just a few results concerning the stability of classic gain scheduling are available
in the literature and the stability is an important property of the controllers for aeronautical
applications. The simulation results show the limit of this control solution insofar as the stability
problem of the classic gain scheduling is encountered. Indeed this control solution could not
ensure the stability of the control solution for all combinations of the varying parameters.

Discussion about the modern gain scheduling results

Good results are obtained concerning modern gain scheduling based on the polytopic approach.
Nevertheless, the controller synthesized with the proportional resistive torque calculation is ac-
ceptable, insofar as the responses of scenarios 1 and 2 are better. The response of scenario 1 which
slightly goes outside the template is tolerated. The two modern gain scheduling techniques give
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different results and this may be explained by the constraints linked to the polytope. Indeed,
the choice of the polytope is a compromise between the number of vertices, which is directly
linked to the number of H∞ controllers and the way in which the polytope includes the param-
eter varying space: a bad polytope may introduce conservatism or the LMI solver cannot find a
solution. For example, the polytope presented in Figure 4.14 is composed of four vertices, but
it is not very close to the parameter varying space. The area over the dotted line is quite large.
This main drawback may explain that better results are obtained with the controller synthesized
with the proportional resistive torque. For this latter, the polytope is closer to the ideal curve
of the varying parameter. Even more, the polytope consists of two vertices which coincides with
the trajectory of the varying parameter. As a conclusion, an accurate and detailed synthesis
model is not the most important goal to reach for control purposes. A compromise must be
found between the equation of the synthesis model and the real system and the complexity of
the resulting synthesis model. Indeed, a complex synthesis model requires a complex polytope
which may increase the conservatism of the LMI formulation.

Improvements of the modern gain scheduling results

To improve the results obtained with modern gain scheduling, less conservative formulation
may be taken into account. For example, the formulation which considers the evolution of
the varying parameters speed may be interesting [Apkarian and Adams, 1998] [Wu et al., 1996].
In this formulation, the additional hypothesis expressed by ρ̇min < ρ̇ < ρ̇max helps to reduce
the conservatism by limiting the evolution speed of the varying parameter inside the polytope.
This control strategy has been applied with success for the control of the air path system of
diesel engine [Wei and del Re, 2007]. Moreover, LMI’s formulation based on multiple Lyapunov
functions may give good results. In this case, the research of a Lyapunov function for each vertex
of the polytope helps to reduce the conservatism [de Oliveira et al., 2004]. As a conclusion,
modern gain scheduling based on the polytopic formulation is a powerful tool which helps to
consider the non-linearities of the system in the control laws.

H∞ control synthesis and feedforward approach

Another interesting point can be underlined regarding the simulation results proposed in this
section. As it can be shown in Figure 4.9, a tracking error is observed. This latter, which is
approximately of 1◦ is lower than the maximum allowed value of 2◦. Nevertheless, it could be
interesting to improve the current solution and take an interest in feedforward tracking controller
which may give the possibility to reduce the tracking error [Ohishi et al., 2006].

4.2.5 Controller order reduction

As it is well-known, the main drawback of H∞ synthesis is the order of the obtained controller
when conventional optimization algorithms are employed to synthesize the controller. Then,
different solutions, reducing the controller order can be found in the literature:

• MOR:
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Reducing the model order or the controller order with well-known model reduction
technique based on the Hankel singular values and presented in details in Section
C. This is the solution for a large number of applications ([Hardiansyah et al., 2006]),
([Poussot-Vassal et al., 2008]).

• controller reduction based on γ∞ constraint:
Reducing the controller order with the help of an additional optimization algorithm once it
has been synthesized with a “conventional” optimization method. The controller structure
is first synthesized with a “conventional” method, then a second optimization algorithm
tries to find a controller with a closed performance index (γ∞) and a low order. For
example, ([Lee, 2004]) uses a genetic algorithm to find the reduced order controller.

• HIFOO:
Reducing the controller order, using an optimization algorithm which is able to add
some controller structure constraints directly during the synthesis. Such constraints
significantly change the optimization algorithm which becomes non-convex and non-
smooth. Various tools have been proposed recently to solve this optimization prob-
lem ([Apkarian and Noll, 2006]). A toolbox developed on Matlabr called HIFOO (HI-
FOO: H∞ Fixed-Order Optimization) can be used to solve the optimization problem
([Burke et al., 2005]).

Table 4.3 summarizes the advantages and drawbacks of the controller order reduction meth-
ods.

4.2.6 Test bench validation

4.2.6.1 Presentation of the test bench

The test bench, developed in the frame of the DRESS project is presented in Figure 4.19.

steering

actuator

torque link

leg

antagonist torque device

Figure 4.19: Test bench in Messier Bugatti facilities
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Method Advantages Drawbacks

MOR

• accurate theoretical tool (cf.
Section C)

• commonly used method

• stability of the reduced con-
troller is not guarantee

controller re-
duction based
on γ∞ con-
straint

• the performance index (γ∞)
is kept

• two consecutive optimiza-
tions are required

HIFOO

• the structure of the controller
is directly fixed

• availability of a the HIFOO
toolbox

• time required for the con-
troller synthesis is very long,
10 times greater than the
classic method of optimiza-
tion (cf. Section 2.2.2)

• optimization based on ran-
dom initializations

Table 4.3: Advantages and Drawbacks of the controller order reduction methods

The test bench has been designed and manufactured based on a dummy landing gear in order
to receive the electromechanical steering actuator. The loading system, used to simulate the load
generated at axle level, is based on a hydraulic actuator and a torque control system. This test
bench aims at:

• contributing to the validation of the DRESS steering system,

• supporting correlation of modelling activities.

4.2.6.2 Validation of the control solution

Introduction

Previously in this chapter, simulation results based on LPV robust control solutions have been
presented. The control algorithms vary as a function of the A/C longitudinal speed. However, the
test bench does not take account of the A/C speed. Moreover, the resistive torque is simulated
using hydraulic actuators mounted at the bottom of the NLG and it is not possible to validate
all the previously presented control solutions. It has thus been decided to test only LTI control
solutions, on the test bench. The controller is based on the “usual” 2-input structure and is
obtained with the HIFOO optimization solver. This latter gives the possibility to fix the controller
order without restriction.

The effectiveness of the HIFOO optimization method has been demonstrated; this solution is
used in simulations [Gumussoy et al., 2008]) or for real applications ([Knittel et al., 2007]). The
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optimization problem is a hybrid non-convex and non-smooth algorithm which requires two steps
(see [Burke et al., 2005] for more details). The algorithm uses a random initialization; in similar
conditions (the same synthesis model and the same controller order) different controllers are
synthesized. It is difficult to precisely tune the synthesis parameters (that means the weighting
parameters) and to obtain the desired response. However, a priori estimate of the controller can
be given. It helps to reduce the reliance on random initialization on the one hand, and to lead
the study toward a prior solution, on the other hand.

First step of the controller validation

After the first tests on bench, two major improvements on the control solution have been done.
Indeed, it has been remarked that the noise on the wheel angle measures provided by redundant
sensors was significant, so it is required to take account of this phenomenon in the controller
synthesis. First, a new weighting filter Wn has been added, considering the influence of the noise
(cf. Figure 4.20). Secondly, the measured signal θw is filtered.
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Figure 4.20: Improvement of the model synthesis structure 3

The results of the tests on the bench are presented in Figures 4.21 and 4.22.
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Figure 4.21: Wheel angle response for the first step of the controller validation
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Figure 4.22: Torque required for the first step of the controller validation

It can be seen that the proposed controller gives satisfying results in the first part. Indeed,
the wheel angle demand and the wheel angle response are very close. However, at time t = 80s,
the two signals become different. The wheel angle demand is amplified and the response needs
approximately 15s to be stabilized. In this case, the response of the system is degraded because
the frequency excitation is very high (≈ 0.5Hz) and the wheel speed demand is at its maximum
(18◦/s). Figure 4.23 presents a zoom of this particular part of the response. Moreover, it can be
seen that the torque demand exceeds the minimum and maximum allowed torque values. Thus,
the controller saturates (cf. Figure 4.24).
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Figure 4.23: Wheel angle response for the first step of the controller validation (ZOOM)

The phenomenon observed at the end of the test is explained with Figure 4.24. It shows two
particularities of the motors. On the one hand, they do not have similar behaviours. Indeed,
even if the two motors receive similar control signals, the torque response of the first motor (grey
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curve) and the torque response of the second motor (dashed grey curve) are not merged. On
the other hand, their respective power is not sufficient to follow the required torque. The signals
observed on the test bench are different from those obtained with the simulation models. The
models of the motors does not sufficiently match with the available motors.
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Figure 4.24: Torque required with the motor responses

4.2.7 Conclusions and Perspectives

This section presented the control of the NLG for steering purposes. Firstly, the motivations of
the use of robust H∞ control theory have been explained (cf. Section 4.2.1). Secondly, a method
which gives the possibility to define an optimal structure of the “generalized” model P and to
obtain the definition of the weighting filters has been developed (cf. Section 4.2.2). Thirdly, con-
trollers based on the LTI approach, gain scheduling classic output blending or modern polytopic
approach have been synthesized. The simulation results help to conclude on the predilection
for modern gain scheduling based on polytopic approach. Indeed, Sections 4.2.4.3 and 4.2.4.4,
dedicated to classic gain scheduling approach, have pointed out the fact that instabilities may
appear because stability can be assured only locally when a slow variation of the varying param-
eter is considered. Concerning the synthesis of gain scheduling controller based on the polytopic
approach, Sections 4.2.4.5 and 4.2.4.6 present convincing results. Despite closed-loop responses
which slightly go outside the template, the gain scheduling controllers based on the polytopic
approach are satisfying when they are synthesized with both synthesis models (A/C-based LPV
NLG steering model and simple LPV NLG steering model). Nevertheless, better results are ob-
tained with the simple LPV NLG steering model, showing that an accurate and detailed synthesis
model is not the most important goal to reach for control purposes. Thus, a compromise must
be found between the equation of the synthesis model with the real system and the complexity
of the resulting synthesis model. Fourthly, the drawback of H∞ control theory which tends to
synthesize high order controllers has been mentioned and solutions to deal with this problem
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have been suggested (cf. Section 4.2.5). Finally, the control solution has been applied on the real
test bench developed in the frame of the DRESS project (cf. Section 4.2.6). For this validation
step, it was not possible to implement the modern polytopic gain scheduling controllers, but the
simple LTI one has been tested. Indeed, the resistive torque at W/R level, which takes account
of the A/C longitudinal speed in the simulation models, is obtained on the test bench by the use
of an hydraulic actuator which applies constant torque or torques that corresponds to typical
load cases. This is a very important step in the development of a control solution. Based on real
test measurements, models have been improved and finally satisfying results are obtained on the
test bench.

Concerning the synthesis of the controllers, different improvements have been suggested:

• it could be interesting to introduce a constraint on the evolution speed of the varying
parameter ([Apkarian and Adams, 1998] [Wu et al., 1996]),

• the formulation of the polytopic gain scheduling problem could be extended to multiple
Lyapunov functions ([de Oliveira et al., 2004]),

• the structure of the controller could integrate a feedforward contribution in order to reduce
the tracking error.

Moreover, the LTI controllers which have been tested on the bench are synthesized with the
HIFOO toolbox and the LPV NLG steering model based on an A/C model. It could be rewarding
to test other controllers based on HIFOO and other synthesis method (cf. Section 4.2.3). Then,
the resistive torque applied on the test bench could be improved such that it represents the
W/R interface more accurately. This will permit to apply and to validate the gain scheduling
approaches.

4.3 Shimmy control

4.3.1 Introduction

In the frame of the DRESS project, the control of the shimmy phenomenon is done through an
initiatory study. The objective is to investigate the feasibility of active shimmy damping. Thus,
two main points have been studied. On the one hand, a control solution which is able to damp
the shimmy oscillations has to be proposed and tested by simulations. On the other hand, the
characterization of the control signal has to be determined from the simulation tests. The main
reflection deals with the needed dynamics. Indeed, it is well-known that the shimmy frequencies
are very high (≈ 20−30Hz) and the sizing of the electromechanical shimmy actuator is a critical
task.

The first part of the section (cf. Section 4.3.2) aims at presenting the simulation results of
the shimmy model through three different test scenarios. Then, three different control solutions,
based on fuzzy adaptive control which give the possibility to damp shimmy oscillations are
detailed. Firstly, the direct and indirect state feedback solutions are presented in Section 4.3.3.
Secondly, in Section 4.3.4, simulation results based on the output feedback control solution are
proposed. Finally, a robustness analysis is proposed in Section 4.3.5. This latter aims at studying
the behaviour of the control solution when parameters of the model are changing.
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The control solutions which are proposed in this section have been done in collaboration with
Thai-Hoang Huynh from the Ho Chi Minh University. Particularly, he developed the last solution
based on output feedback and for this control solution my contribution consists in tuning the
algorithm parameters to be adapted for the considered shimmy model.

4.3.2 Shimmy test scenarios: open loop results

In order to be comparable with previously published works on shimmy analysis, the proposed
model (except for the actuator characteristics) has been configured with the parameters presented
in [Somieski, 1997] which correspond to the nose landing gear parameters of a commercial civil
aircraft. They are summarized in the following table:

Parameter Value Unit
Vx 0...80 m.s−1

a 0.1 m

e 0.1 m

cFα 20 rad−1

δ 5 ◦

cMα -2 m.rad−1

αg 10 ◦

Ja 0.1 kg.m2

Jz 1 kg.m2

Ba 0.1 N.rad−1.s

Fz 9000 N

ks 100000 N.m.rad−1

kd 10 N.m.rad−1.s

κ -270 N.m2.rad−1

σ 0.3 m

To illustrate the performance of the proposed shimmy model, three different test scenarios
have been chosen. In the aeronautical domain, they usually help to test the behaviour of the
NLG. For all the three proposed cases, the turning tube is kept at zero position and a perturbation
is applied directly on the tyre. The case studies that have been selected are:

• Scenario 1: Constant ground speed, pulse disturbance
The aircraft is supposed to have a forward ground speed of 80m/s, the disturbance is a
torque pulse of 1000N.m for 0.1s and directly acts on the vertical axis at the wheel level.
This test actually corresponds to a tyre damage scenario.

• Scenario 2: Constant ground speed, rough runway
The purpose of this test is to investigate the effect of the roughness of the runway while the
aircraft is running at a maximum speed of 80 m/s. This influence is modelled by a random
disturbance which is a white noise with zero mean and a standard deviation of 100N.m.

• Scenario 3: Varying ground speed, rough runway
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In this scenario, the same test as in scenario 2 is performed, with a varying forward velocity
of the aircraft: v changes from 10 to 80m/s. This test is carried out because of the
sensitivity of the shimmy phenomenon to the aircraft forward velocity [Somieski, 1997].

The simulation of scenario 1 is illustrated in Figure 4.25. The disturbance is applied on the
tyre at time 0.2s for a duration of 0.1s. As it can be seen in the figure, the NLG starts to oscillate,
i.e. shimmy appears, as soon as the perturbation is applied on the tyre. Then, the amplitude of
the oscillations starts growing with time and the system becomes unstable.
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Figure 4.25: Shimmy caused by a tyre damage

Scenario 2 is illustrated in Figure 4.26. The disturbance, representing a high roughness of
the runway, is applied on the tyre at the beginning of the simulation and the aircraft runs at
80m/s. As it can be seen in the figure, the NLG slowly starts to oscillate and after a while, as
in scenario 1, becomes unstable in the same way.
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Figure 4.26: Shimmy caused by a rough runway

Concerning these two scenarios, Scenario 1 and Scenario 2, the results are those obtained for
a simulation of 1s. For this duration, numerous oscillations with a frequency of 50Hz appear,
corresponding approximately to the resonance frequency of the shimmy phenomenon.

Scenario 3 is illustrated in Figure 4.27. The aircraft forward velocity is a critical parameter
of the shimmy phenomenon and this scenario aims at illustrating this aspect. During landing
and take-off, the aircraft ground velocity varies between 0 and 80m/s and this scenario shows
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the impact of this varying parameter on the behaviour of the NLG; the simulation is performed
on 15s, allowing a speed variation from 0 to 80m/s. At low speed (under 25m/s), the system is
stable whereas it becomes unstable and shimmy appears when the forward velocity of the aircraft
is higher than 25m/s.
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Figure 4.27: Impact of the forward velocity

These 3 scenarios show a shimmy phenomenon characterized by a natural frequency around
50Hz and an increasing amplitude up to 20◦. These results are in adequacy with the ones
which can be found in the literature. It must be underlined that such a situation could generate
malfunctioning and/or severe damages of the landing gear. That is why damping solutions are
required.

4.3.3 Simulation results based on the state feedback control solutions

4.3.3.1 Controller design

This section describes the design of the parameters used for the indirect and direct fuzzy adaptive
controllers respectively presented in Sections 2.3.2.1 and 2.3.2.2.

For the indirect solution, the fuzzy system is constructed with 72 rules such that θw and θ̇w

are defined with three Gaussian membership functions and the other states are defined with two
Gaussian membership functions. The membership functions are specified with a “center” c and
a “width” σ such that:

µ(x) = exp

(
−

(
x− c

σ

)2
)

(4.1)
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Furthermore, the fuzzy Cartesian product is used to implement the logical “and” operation
present in the fuzzy rule such that:

µF 1
k×F 2

l ×···×F n
m

(x1, x2, . . . , xn) = µF 1
k
× · · · × µF n

m
(4.2)

Finally, a weighted average method is used for the defuzzification and the output of the fuzzy
system obtained is:

y = f(x) =

p∑
i=1

θiµi

p∑
i=1

µi

= θT ς (4.3)

where µi := µF 1
k×F 2

l ×···×F n
m

(x1, x2, . . . , xn) is the membership function of the ith rule, θT :=
[θ1, ..., θp] and ςT := [µ1...µp]/[

∑p
i=1 µi]. Moreover, the membership functions are uniformly

distributed in the whole range of each state variable. Concerning the direct solution, the fuzzy
system is quite similar with three Gaussian membership functions for state variable θw and two
for the others. So, the fuzzy system consists of 48 rules. The discourse universe of each state is
in the range (−xi, xi) such that x1 = π/10rad, x2 = 10πrad.s−1, x3 = 0.1m, x4 = π/10rad and
x5 = 10πrad.s−1. These values were chosen following numerous simulations and correspond to
the maximum values of the states obtained with a large disturbance.

The NLG model considered is a 5th order non-linear system with a relative degree of 3. In
this case, the tracking error is es(t) = ë0(t) + k1ė0(t) + k0e0(t). The constants chosen for the
indirect solution are k0 = 25 and k1 = 7, whereas the constants are equal to k0 = 50 and k1 = 15
for the direct solution. These values were tuned step by step, to obtain the desired response of
the system’s output. The structure of the two state feedback controllers are not similar that is
why the values of the parameters k0 and k1 are different.

The particularity of these algorithms is the use of a constant value for the control gain B.
This constant, defined by the model parameters kd, Ja and J2, is equal to 100. The simulations
showed that the maximum value of the estimates â(x) is approximately equal to 10, 000; so,
for the indirect solution, the error estimation is deliberately bounded by 10% of this maximum
value, so δa = 1, 000 is obtained. Concerning the direct solution, δu is chosen to be small to limit
the chattering phenomenon which may occur in the switching stabilizing control signal.

4.3.3.2 Control solution performances (simulation results)

Scenario 1: constant ground speed, pulse disturbance

As explained in Section 3.3.3, this test corresponds to a tyre damage simulation scenario. Figures
4.28 and 4.29 show the response of the NLG with respectively the direct and the indirect active
damping controllers.

It is obvious that no shimmy appears since the oscillations are rapidly and efficiently damped.
However, as the figures reveal, there is a small bias angle during the time the disturbance is
applied; the wheel only returns to its original zero position when the disturbance disappears.
This behaviour of the proposed active damping controllers is quite similar to that of current
passive shimmy damping solutions. The main purpose of the designed controllers is not to drive
the wheel, but to damp the shimmy oscillation. In fact, it is possible to choose the design
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Figure 4.28: Active shimmy damping Scenario 1 (State feedback: Direct solution)
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Figure 4.29: Active shimmy damping Scenario 1 (State feedback: Indirect solution)

parameters of the adaptive controllers so that the wheel angle remains close to its initial position
(0◦) even when the disturbance acts on the system, but in this case the control torque must be
larger.

The two solutions give quite similar responses. In both cases, the oscillations are correctly
damped and the maximum deviation of the wheel is lower than 1◦ with a mean value of 0.5◦.
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4.3. Shimmy control

Scenario 2: Constant ground speed, rough runway

This scenario is performed to simulate the effects of the roughness of the runway on the NLG
at high speed (80m/s). The results with the proposed active damping controllers are plotted in
Figures 4.30 and 4.31.
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Figure 4.30: Active shimmy damping Scenario 2 (State feedback: Direct solution)
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Figure 4.31: Active shimmy damping Scenario 2 (State feedback: Indirect solution)

Even with important random perturbations and at a high forward velocity, shimmy does not
occur. Moreover, the variation of the wheel angle due to the high road imperfections, is very
small (less than 0.2◦). In practice, this small variation cannot cause any damage or malfunction

127



Chapter 4. Control of the aircraft nose landing gear

to the NLG.

Scenario 3: Varying ground speed, rough runway

The aim of this test is to investigate the performance of the damping controllers when the system
is under varying speed conditions. The forward velocity is a critical parameter in the shimmy
phenomenon: the shimmy oscillations traditionally increase with the increasing velocity. In low
speed conditions (≤ 25m/s), shimmy does not easily affect the NLG behaviour [Somieski, 1997].
So, this scenario helps to verify that the active controllers do not affect the system stability at
low speed and that they damp the oscillations at high speed. Figures 4.32 and 4.33 show the
simulation results with the two active shimmy damping controllers in action.

Under the critical forward velocity of the aircraft (≈ 25m/s), the two controllers give similar
results: shimmy is not observed and the control laws do not destabilize the NLG. Beyond this
critical speed, the shimmy oscillations which appear with the non-controlled plant are actually
damped.
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Figure 4.32: Active shimmy damping Scenario 3 (State feedback: Direct solution)

4.3.4 Simulation results based on the output feedback solution

4.3.4.1 Controller design

The design of the fuzzy adaptive output feedback control algorithm presented in Section 2.3.3 is
discussed here. On the one hand, the description of the linear dynamic compensator is proposed.
On the other hand, the fuzzy system is introduced.

Linear dynamic compensator

The linear dynamic compensator is designed to meet the error dynamic requirements. As dis-
cussed in Section 2.3.3, the purpose of vad is to cancel the unknown approximation error dynamics
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Figure 4.33: Active shimmy damping Scenario 3 (State feedback: Indirect solution)

∆. In the ideal case, equation (2.46) becomes:

srỹ(s) = −vdc(s) (4.4)

with r is the relative degree of the system which is equal in the proposed application to 3.
Substituting equation (4.4) into equation (2.47) leads to:

(srDdc(s) + Ndc(s))ỹ = 0 (4.5)

Equation (4.5) shows that the polynomials Ddc(s) and Ndc(s) determine the output error dy-
namics. For this shimmy damping application, the requirement based on the relative degree
presented in equation (2.51) becomes:

deg(Ddc(s)) ≥ deg(Ndc(s)) ≥ 2 (4.6)

To obtain the control system as simple as possible, choose Ddc(s) and Ndc(s) as:

Ndc(s) = b0s
2 + b1s + b2 (4.7)

Ddc(s) = s2 + a1s + a2 (4.8)

From equations (4.7) and (4.8), we have

srDdc(s) + Ndc = s5 + a1s
4 + a2s

3 + b0s
2 + b1s + b2 (4.9)

Through an empirical adjustment, the five roots of equation (4.9) are placed at −5, −5, −10,
−30, and −35 which leads to

Ddc(s) = s2 + a1s + a2 = s2 + 85s + 2475 (4.10)

Ndc(s) = b0s
2 + b1s + b2 = 29375s2 + 147500s + 262500 (4.11)
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The transfer function Ḡ(s) must be strictly positive real, this means arg(Ḡ(jw)) must be
in the range ±90◦. The poles of Ḡ(s) are specified above, it is possible to choose the zeros of
Ḡ(s) interlacing with the poles such that −90◦ 6 arg(Ḡ(jw)) 6 90◦, ∀w. Particularly, the
zeros are placed at −1, −3, −80, −100. Because the numerator of Ḡ(s) is Nad(s) and T (s) can
be determined by assigning the zeros of Ḡ(s) to them. The low-pass filter T−1(s) should have
as wide bandwidth as possible, so the two zeros −80 and −100 are assigned to T (s) and the
other zeros are assigned to Nad(s). Moreover, the maximum gain of the filter T−1(s) is chosen
to be unity because the purpose of T−1(s) is to make Ḡ(s) strictly positive real, not to change
the dynamics of the basic function of the fuzzy system used in the adaptive part. Finally, the
polynomials Nad(s) and T (s) are as follows:

Nad(s) = 8000(s + 1)(s + 3) (4.12)

T (s) =
(s + 80)(s + 100)

8000
(4.13)

Fuzzy system

In this work, a fuzzy system is employed to implement the adaptive part of the controller. To
satisfy the condition n1 ≥ n, it has been chosen to put n1 = 5. The input of the fuzzy system is:

η(t) = [v(t), v(t− d), y(t), y(t− d), y(t− 2d),
y(t− 3d), y(t− 4d)]T = [η1(t), ..., η7(t)]T

(4.14)

where time delay d = 0.0001s. According to equation (4.14), the fuzzy system has 7 inputs.
Two Gaussian membership functions are defined for each input. The membership functions are
equally distributed in the range (−η̄i, η̄i) for each input, with η̄1 = η̄2 = 2000, η̄3 = η̄4 = · · · =
η̄7 = 20×pi/180. The fuzzy system consists of 128 rules of the form presented in equation (1.21).
The time delay should be small enough and the number of fuzzy rules should be large enough
so that the approximation error is small. The parameter vector θ in the conclusion part of the
fuzzy system is updated according to equation (2.65) with F = 10I (where I is a 128 identity
matrix) and λw = 0.001.

4.3.4.2 Control solution performances (simulation results)

Scenario 1: constant ground speed, pulse disturbance

Figure 4.34 presents the response of the NLG with the output feedback controller.
It is obvious that no shimmy appears and the maximum wheel angle is approximately 5◦.

The system needs approximately 0.3s to damp the oscillations fully. At time t = 0.6s, just a
small oscillation is still in evidence.

Scenario 2: Constant ground speed, rough runway

The results for the scenario 2, which simulate the effects of the roughness of the runway on the
NLG at high speed (80m/s), are plotted in Figure 4.35.

Shimmy does not occur and the variation of the wheel angle is very small (less than 0.2◦).
It can be concluded that at 80m/s, the control solution is not affected by the roughness of the
runway.
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Figure 4.34: Active shimmy damping Scenario 1 (Output feedback)
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Figure 4.35: Active shimmy damping Scenario 2 (Output feedback)

Scenario 3: Varying ground speed, rough runway

Figure 4.36 shows the simulation results with the output feedback shimmy damping controllers
in action for scenario 3. This scenario helps to verify that the controller does not affect the
system stability at low speed and that the oscillations are damped at high speed.

The results show that the behaviour of the closed loop system is stable and no shimmy
appears.
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Figure 4.36: Active shimmy damping Scenario 3 (Output feedback)

4.3.5 Robustness analysis of the adaptive control solution

The three proposed control solutions show satisfactory results but the variations of the system
parameters are not taken into account during simulation tests. Indeed, the conditions at the
W/R interface are not always the same; the runway can be dry or wet. In addition, some
components of the NLG varies during the life of the system. Finally, these variations must be
taken into account. That is why a robustness study is proposed. This robustness study which is
based on the indirect state feedback algorithm, aims at testing the properties of the closed loop
system when variations of the parameters are introduced during simulations.

Simulations which correspond to different perturbations that can destabilize the system have
been studied (a pulse disturbance acting during 0.1s and a random noise of low amplitude).
However, the tuning of the controller has been made by considering a fixed value of the parameters
of the landing gear. The robustness of the control solution is not presented here as a theoretical
study, but it is rather based on simulations. Different tests are run in order to analyse the
performance and the stability of the algorithm when variations of model parameters appear.

The proposed study will take an interest to 4 different aspects affecting the system:

• the tyre,

• the load,

• the speed,

• the NLG stiffness.

The tyre has different behaviours depending on the W/R interface. The generated forces and
moments change if the runway is dry, wet or icy [Pacejka, 2006]. Thus, three different forces and
moments generated at the W/R interface are included in the study of robustness. These three
features called F 1

y /M1
z , F 2

y /M2
z and F 3

y /M3
z correspond to a dry, wet or snowy runway.
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4.3. Shimmy control

The load Fz is fixed but this value is not constant during the landing and take off and can
vary depending on the load transfer. The robustness study focuses on a variation of ±20% of
the nominal load. Thus, F inf

z et F sup
z are the two types of considered loads.

The mechanical characteristics of the NLG are not fixed and the parameters such as the
stiffness vary. That is why the study of robustness considers a variation of ±10% of this constant
defining kinf and ksup.

The A/C longitudinal speed plays an important role in the outbreak of the shimmy phe-
nomenon. This phenomenon appears beyond 25m/s and increases with respect to speed.
Thus, simulations are performed considering 3 different speeds V 1

x = 20m/s, V 2
x = 50m/s and

V 3
x = 80m/s.
The combination of all parameter variations is studied. Thus, a total of 36 simulations is

conducted to validate the robustness of the algorithm. Table 4.4 presents these simulation cases:

Case Runway state Load speed Stiffness

1 F 1
y /M1

z F inf
z V 1

x kinf

2 F 1
y /M1

z F inf
z V 1

x ksup

3 F 1
y /M1

z F inf
z V 2

x kinf

4 F 1
y /M1

z F inf
z V 2

x ksup

5 F 1
y /M1

z F inf
z V 3

x kinf

6 F 3
y /M3

z F inf
z V 3

x ksup

7 F 1
y /M1

z F sup
z V 1

x kinf

8 F 1
y /M1

z F sup
z V 1

x ksup

9 F 1
y /M1

z F sup
z V 2

x kinf

10 F 1
y /M1

z F sup
z V 2

x ksup

11 F 1
y /M1

z F sup
z V 3

x kinf

12 F 1
y /M1

z F sup
z V 3

x ksup

13 F 2
y /M2

z F inf
z V 1

x kinf

14 F 2
y /M2

z F inf
z V 1

x ksup

15 F 2
y /M2

z F inf
z V 2

x kinf

16 F 2
y /M2

z F inf
z V 2

x ksup

17 F 2
y /M2

z F inf
z V 3

x kinf

18 F 2
y /M2

z F inf
z V 3

x ksup

19 F 2
y /M2

z F sup
z V 1

x kinf

20 F 2
y /M2

z F sup
z V 1

x ksup

21 F 2
y /M2

z F sup
z V 2

x kinf

22 F 2
y /M2

z F sup
z V 2

x ksup

23 F 2
y /M2

z F sup
z V 3

x kinf

24 F 2
y /M2

z F sup
z V 3

x ksup

25 F 3
y /M3

z F inf
z V 1

x kinf

26 F 3
y /M3

z F inf
z V 1

x ksup

27 F 3
y /M3

z F inf
z V 2

x kinf
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Case Runway state Load speed Stiffness

28 F 3
y /M3

z F inf
z V 2

x ksup

29 F 3
y /M3

z F inf
z V 3

x kinf

30 F 3
y /M3

z F inf
z V 3

x ksup

31 F 3
y /M3

z F sup
z V 1

x kinf

32 F 3
y /M3

z F sup
z V 1

x ksup

33 F 3
y /M3

z F sup
z V 2

x kinf

34 F 3
y /M3

z F sup
z V 2

x ksup

35 F 3
y /M3

z F sup
z V 3

x kinf

36 F 3
y /M3

z F sup
z V 3

x ksup

Table 4.4: Combination of the parameter variations
The validation of the control solution is based on 4 criteria:

1. the maximum wheel angle caused by the perturbation should not exceed 1.5◦,

2. the effect of the disturbance should not be in evidence after 0.2s,

3. the torque required to damp the oscillations should not exceed 2000Nm,

4. the value of the damping factor df .

The damping factor df is calculated by considering the amplitude of the successive oscillations

a1 and a2 such that df =
ln(a1/a2)√

4π2 + ln(a1/a2)2
.

Simulation results show that criteria 1, 2 and 3 are easily satisfied. When the landing gear
parameters vary considering the different cases, the control signal is able to eliminate the shimmy
oscillations which appear after the disturbance. Criterion 4 which corresponds to the damping
factor is a numerical criterion, evaluating the damping performances of the controller. It allows
to compare the results for different simulations. Case 32, presented in Figure 4.37 is the most
damped closed-loop system while case 11, presented in Figure 4.38, corresponds to the less
damped closed-loop system.

The study of the damping factor shows that the stiffness of the NLG influences the behaviour
of the control solution. Indeed, it can be logically noticed that the simulations using the stiffness
equal to kinf have more oscillations than the simulations using ksup. In addition, the aircraft
speed is also an important factor. An increase of Vx leads to a deterioration of the performances.
Simulations done at 20m/s help to obtain an important damping while it is lower at 80m/s.

4.3.6 Discussion

Inadequacy of the PID solution

This section proposes 3 shimmy damping control algorithms. Here, the aim is to compare them,
according to different criteria (structure, performance, tuning difficulty, ...). Moreover, a PID
controller which is not presented here has been implemented too [Pouly et al., 2009a]. The results
of this simple control solution show that the different responses are not satisfactory and in some
situations the controller destabilizes the system and generates shimmy before the critical speed.
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Figure 4.37: Case 32 : system which is the more damped
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Figure 4.38: Case 11 : system which is the less damped

Results based on the state feedback control solution

For the state feedback indirect adaptive solution, a fuzzy identifier mechanism produces a model
of the plant. Then, this model is used to adapt the controller. For the state feedback direct
adaptive solution, the model of the plant is not necessary, since the controller parameters are
directly identified. Each solution has a specific structure, however, similar components are used
in both: a fuzzy identifier, an update law, a feedback linearisation control term and a sliding
mode control term. The indirect and direct adaptive solutions require restrictive assumptions
(measurement of all the states, bounded errors, ...) and the difference of structure leads to
specific assumptions for each solution. Firstly, the direct and indirect solutions differ in the
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number of fuzzy identifiers. The direct solution requires only one fuzzy system which allows
the identification of the unknown control function. By contrast, the indirect solution generally
requires two fuzzy systems which approximate the two functions a(x) and b(x), representative
of the unknown non-linear dynamics of the system. This difference is significant in terms of time
computation. Secondly, due to the certainty equivalence control term of (2.25), the singularity
problem must not appear in the indirect solution. Thus, the fuzzy system must ensure that b̂(x)
is bounded away from zero. Thirdly, the direct adaptive solution requires a bounding condition
for the derivative of non-linear and smooth functions b(x) of equation (3.41). Nevertheless,
the specificities of the system to be controlled lead to particular structures of the indirect and
direct solutions. The model of the NLG is specific insofar as the term b(x) of equation (3.41)
is independent of the system’s states such that b(x) = B. As a consequence, the structure of
the algorithms developed here has been simplified. Indeed, a number of drawbacks of the two
algorithms disappear. Firstly, the bounding condition of ḃ(x) has no meaning because function
b(x) is a constant. Secondly, the two solutions require only one fuzzy system (only a(x) is
identified in the indirect solution) and thus, time computation for the indirect solution is reduced.
Thirdly, the problem of singularity does not exist, considering that B is a constant defined by
the structural non-zero parameters of the system. If, in this manuscript, this parameter remains
constant, one strategy could be to overcome this assumption. [Ordonez et al., 1997] suggest to
overspecify the fuzzy system design and to consider B as a function of the states x. This choice
may allow greater adaptation flexibility in particular cases.

Results based on the output feedback control solution

Concerning the output feedback controller, the complexity of the control solution increases. This
is obvious because the control solution only measures the system output. This active solution
uses a fuzzy logic system approximating the ideal feedback linearisation law by eliminating an
approximation error. Then, the control solution consists of an adaptive term, a stabilized term
and a feedforward term. The particularity of the fuzzy system is the fact that it has as inputs
delayed control terms and outputs. Moreover, it is clear that comparing to the state feedback
solutions, the design step is more difficult. At last, due to the aeronautical constraints, as for
the two state feedback control solutions, the stability of the algorithm is proved by using the
Lyapunov theory.

State feedback and output feedback comparison

As for performances, the manuscript illustrates that the two state feedback adaptive controllers
give satisfying and similar results in various test conditions. For scenario 1 (constant ground
speed, pulse disturbance), the perturbation is rejected and the oscillations disappear rapidly;
the system will not be damaged. For scenarios 2 and 3, the roughness of the runway does not
affect the NLG and no shimmy is observed, even above the critical aircraft forward velocity.
Concerning the output feedback solution, the response of the closed loop system is satisfying
for the different scenarios too. The simulations showed that the amplitude of the wheel angle is
slightly greater (≈ 1◦ for scenario 3) than solutions based on state feedback solutions (≈ 0.2◦ for
scenario 3). The same conclusion can be made for the amplitude of the required torque.
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Discussion concerning the fuzzy system

The state feedback control solutions use both a fuzzy system. This latter helps to identify the
system dynamics in the case of indirect solution while it permits to directly find the appropriate
control law in the case of direct solution. Nevertheless, it could be possible to integrate an a
priori knowledge of the system dynamics in the case of indirect solution. Indeed, based on the
equation of the system, it could be possible to adjust the input of the fuzzy system. For instance,
if the system reveals coupled states, it could be interesting to consider this a priori knowledge.
This is only possible for the indirect solution insofar as the dynamics (that means the function
a(x) and b(x) could be mathematically defined). On the hand, this addition of supplementary
knowledge may improve the performances of the controller. On the other hand, this tends to
limit the effectiveness of the universal approximator.

Actuator characteristics

Another aspect of this study is to specify the characteristics (torque required, bandwidth,...) of
the electromechanical actuator used for shimmy damping. In Figures 4.30, 4.31 and 4.35, it can
be seen that the controllers require the same control torque in terms of amplitude (approximately
1200N.m). Considering the dynamics of the control signals, the different simulations show that
very important dynamics are required. Nowadays, it seems difficult to build an actuator which
has the capability to provide such properties with the considered constraints (mass, size, ...).

4.4 Conclusion

This chapter deals with the control of the A/C nose landing gear and two applications are
proposed:

• the control of the nose landing gear for steering purposes;

• the damping of the shimmy phenomenon.

The control of the nose landing gear for steering purposes has been detailed in Section 4.2.
The proposed H∞ control solutions give the possibility to steer the NLG by respecting the spec-
ifications. In this section, the attention has been focused on the way of tuning the controller (an
optimal methodology which helps to obtain the controller structure and to define the weighting
parameters has been proposed, cf. Section 4.2.2) and on the gain scheduling controller (particu-
larly the polytopic approach, cf. Sections 4.2.4.5 and 4.2.4.6). Based on simulation results, the
efficiency of gain scheduling H∞ controllers that use the polytopic approach has been examined.
Moreover, experimental tests, performed on the test bench developed in the DRESS project,
have been done (cf. Section 4.2.6). These experiments help to validate the proposed control
solutions.

Concerning the damping of the shimmy phenomenon, the proposed study was limited to
simulations. After a presentation of the different shimmy test scenarios (cf. Section 4.3.2),
three fuzzy adaptive control solutions have been proposed. Firstly, two state feedback control
solutions, based on direct and indirect structures have been considered in Section 4.3.3. Then,
an output feedback solution which is more adapted for aeronautic constraints has been studied
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in Section 4.3.4. The different control solutions, proposed in this section, give the possibility to
damp the shimmy oscillations. Yet, because they use the measure of all the states of the systems,
the state feedback solutions are more satisfactory from the performance point of view; but the
solution based on output feedback is more realistic.

As it can be seen in Figure 3.1 and detailed in Section 3.2, two loops are required for automatic
guidance; the low level loop and the high level loop. If Chapter 4 was mainly dedicated to the
low level control loop that means the control of the NLG steering actuator, Chapter 5 is devoted
to the high level loop. Then, the next chapter will take an interest on the control solutions which
helps to automatically drive a rolling system. Based on experimental results of the automotive
domain, different control solutions are proposed to control longitudinal and lateral dynamics.
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S’il y a tant d’accidents sur les routes,
c’est parce que nous avons des voitures
de demain, conduites par des hommes
d’aujourd’hui sur des routes d’hier.

Pierre-Jean Vaillard
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5.1 Introduction

Automatic guidance of rolling systems is an interesting application which is made possible by
the development of accurate positioning devices like Global Positioning System (GPS) for in-
stance. As mentioned in Section 3.2.3, guidance applications are developed for different do-
mains: mobile robots [Peng et al., 2007], car vehicles [Falcone et al., 2007b], agriculture vehicles
[Fang et al., 2005] or motorcycle [Rowell et al., 2007]. In the aeronautical domain, automatic
guidance is interesting insofar as it would help to facilitate the aircraft on ground displacement
and would give the possibility to operate the airports in “all weather” conditions.

This Chapter presents automatic guidance control solutions. The proposed solutions have
been tested by simulations considering the A/C models presented in Section 3.3.1. The following
takes an interest to the validation of these solutions (longitudinal control and lateral control)
through experimental results. The validation of the control solutions is an important step and
the test of the control algorithm on a real A/C was not possible. So, it has been decided to
adapt the algorithm and to take the advantage of the laboratory experimental resources, which
has various equipped vehicles and then apply the control solutions on a passenger car vehicle.
Several similarities can be observed between longitudinal and lateral guidance applied on an A/C
or a passenger car vehicle:

• Issues are very similar:
Considering the longitudinal aspect, for both aeronautic and automotive applications, the
control of the speed gives the possibility to behave more secure rolling system.

• Models are very similar:
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5.2. Longitudinal and lateral control

For aeronautic and automotive applications, the “bicycle” model, presented in
Section 3.3.1.4 is a well-used model ([Duprez, 2004], [Roos and Biannic, 2006],
[Falcone et al., 2007a])

The chapter is organized as follows. First, the high level control loop which includes the
longitudinal control and the lateral control is presented in Section 5.2. Then, the instrumentation
of the car vehicle which integrates an acquisition system, some sensors and actuators is described.
Later, results of the vehicle model identification are given in Section 5.4. On the one hand
the identification of a LPV “bicycle” model is performed. On the other hand, based on real
measures, two NN are identified. Finally the experimental results, dedicated to longitudinal and
lateral control, are described. Concerning the longitudinal aspect, based on a collaboration with
different members of the laboratory, an intelligent cruise control is proposed. Concerning the
lateral control, different control solutions (“Follow the carrot”, LPV MPC and NN MPC) are
experimented and a discussion which compares these solutions ends this chapter.

5.2 Longitudinal and lateral control

5.2.1 Choice of the controller strategy

As mentioned in Section 3.2.1, two main control strategies help to control the longitudinal and
lateral displacements of a rolling system on the ground. On the one hand, the LoLG structure
is considered. This strategy is divided in two different parts; the aim is to decouple the lateral
control of the rolling system with the longitudinal control. On the other hand, the LaLG han-
dles the longitudinal controller and the lateral controller at the same same time with a single
controller.

In the frame of the vehicle domain, the LoLG strategy is preferred. The fact that the
control structure acts on longitudinal and lateral dynamics independently gives the possibility
to activate one of the two control possibilities. Indeed, in the automotive domain for example,
the longitudinal control or vehicle speed control is nowadays relatively accepted by the drivers
and they have a lot of satisfaction to use such a driver assistance system. Concerning the lateral
control the driver does not seem willing to let an automatic guidance system steer the vehicle.
Moreover, on a control point of view it is easier to implement the strategy that separates the
longitudinal and the lateral control.

Nevertheless, even if the two control loops are separated (for the LoLG strategy, one loop is
dedicated to the control of the longitudinal behaviour while the other is responsible of the lateral
dynamics), dynamics that are considered in the vehicle are entirely coupled. This is clearly felt
in the vehicle when a bend is taken at different speeds. Indeed, when the longitudinal speed (Vx)
increases, the lateral acceleration (γT ) becomes more and more significant, resulting in a force
that tends to increase with the longitudinal speed augmentation, push the vehicle occupants to
the outside of the turn. Thus, considering the modelling and control aspects, the two loops share
some data. For example, the lateral control loop uses the longitudinal speed Vx, to adapt the
control signal in adequacy with this physical quantity.
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5.2.2 Proposed strategy

The chosen solution which is based on the LoLG strategy is presented in Figure 5.1. This
strategy clearly corresponds to a LoLG strategy insofar as the two blocks “steering controller”
and “speed controller” would combine into one in the case of LaLG strategy. This strategy is

digital map database

path speed profile

steering planner speed planner

steering controller speed controller

steering dynamics propulsion dynamics

rolling system dynamics

X, Y , ψ, Vx, Vy, r X,Y

θw Vx

steering input speed input

θw desired Vx desired

Figure 5.1: LoLG control strategy

based on two parallel loops, the first, on the left, is dedicated to the lateral control while the
second on the right aims at providing the appropriate longitudinal speed order. Based on a
digital map database of the road network, two data are provided, the path and the speed profile.
The path is only a succession of X and Y coordinates that the vehicle must follow. The speed
profile is defined based on some information of the digital map database and notably the road
curvature. A particular paragraph is dedicated to the achievement of the speed profile in Section
5.5. Regarding to the lateral control loop, the steering planner aims at providing the desired
wheel angle. The experimental results of the different proposed control solutions are given in
Section 5.6. For the steering controller, in the automotive domain, it is a simple PID loop which
controls a steering motor, while in the aeronautic domain the nose wheel is steered by the use
of a robust control solution detailed in Section 4.2. With regard to the longitudinal control, the
speed planner is based on a Finite State Machine (FSM) detailed in Section 5.5 and a simple
PID controls the braking system.
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5.3 Instrumentation of the test vehicle

5.3.1 Test vehicle presentation

The laboratory possesses different test vehicles which are fully equipped for modelling, identifica-
tion, control and diagnostics. Among these vehicles, the Renault Scénic (Figure 5.2), is dedicated
to driver assistance systems and particularly systems based on GPS and digital map database.

Figure 5.2: Test vehicle (Renault Scénic)

5.3.2 Acquisition system description

The solution chosen for the data acquisition of all the sensors and the control of all the actuators
is an AutoBoxr system from dSPACEr which is a standard rapid prototyping system used in
automotive industries. It is an hardware and software solution particularly robust and efficient.
The AutoBoxr is composed of a PowerPC processor and multiple I/O boards. Moreover, it is
linked with an industrial computer via an Ethernet network. The industrial computer helps to
develop acquisition and control models which are compiled and transferred on the AutoBoxr.
The input-output boards of the AutoBoxr are analog/digital converters, digital signal acquisition
board, serial RS232 board, Controller Area Network (CAN) board ...

5.3.3 Sensors descritpion

The main sensors which are installed in the test vehicle and used in the frame of this thesis are:

• an Advanced Driver Assistance Systems Research Platform (ADASRP) navigation system
from Navteqr,

• a DGPS receiver,

• a RT3002 inertial unit,

• a steering wheel angle sensor.
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5.3.3.1 ADASRP navigation system

The ADASRP provided by Navteqr is an open framework allowing the development of Advanced
Driver Assistance Systems (ADAS). It is a global positioning system (GPS) that provides data
about the road network ahead of the moving vehicle which can be used for different control
applications. The architecture of this system, based on software and hardware components, is
presented in Figure 5.3.
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Figure 5.3: ADASRP

It contains a GPS and gyrometer based Sensorboxr, a digital map database, a map-matching
algorithm and an electronic horizon provider, which are all available in most standards car navi-
gation systems. The map-matched position is essential for the determination of the current elec-
tronic horizon which contains all the road network information about the current and upcoming
road context. This information is used to determine road events (bend, intersection, straight line,
etc.). From the Electronic Horizon data and the considered constraints, the trajectory is gener-
ated. Finally, following the considered ADAS application, informations from the trajectory are
collected (for instance the road curvature) and a control signal is provided to the ADAS applica-
tion. For instance, in the case of Advanced Front Lighting System ([Lauffenburger et al., 2007]),
the ADAS Application Control provides the movement of the headlights to the ADAS applica-
tion.

Considering the characteristics of this system, the positioning accuracy is about 2m and the
digital map database accuracy is about 5m in the absolute and 2m in the relative.
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5.3.3.2 DGPS receiver

To address the problem of accuracy of the GPS system, some applications require the use of a
DGPS (Differential Global Positioning System). It is an enhanced GPS which uses a ground-
based reference stations to broadcast the difference between the positions indicated by the satel-
lite systems and the known fixed position. The correction signal is broadcasted over UHF radio
signals.

The DGPS system used in the laboratory is composed of a reference station (Scorpio SK6002)
and a mobile station (Aquarius MK5002) from Thalèsr. The use of DGPS provides a positioning
accuracy of 1cm in x, y and 2cm in z.

The acquisition of the DGPS information that means the X and Y position of the vehicle
and its heading θ in a Lambert 2 coordinate frame is done by the serial bus at a frequency of
10Hz.

5.3.3.3 RT3002 Inertial Unit

The RT3002 from OXTSr is an inertial and GPS system which includes three angular rate
sensors (gyrometers), three servo-grade accelerometers, the GPS receiver and all the required
processing for the data integration. In the frame of this thesis, it is mainly used to measure the
angular velocity r around the vertical axis z, and longitudinal and lateral speeds (respectively
Vx and Vy) of the vehicle.

The RT3002 is controlled by the CAN bus and the acquisition of the information is done
at 100Hz. The accuracy of the velocity information is 0.05km/h RMS while the angular rate
accuracy is 0.01◦/s.

5.3.4 Actuators presentation

The principal actuators which are installed on the test vehicle and used in the frame of this thesis
are:

• a cruise control,

• an electrical braking system,

• a steering motor.

5.3.4.1 Cruise control

The cruise control is a control device that acts directly on the throttle angle regarding the
different signals given by the driver via a remote. However to automatically control the vehicle
on road, this remote has been replaced by signals coming from the dSPACEr AutoBoxr control
system. The signals that are sent to the cruise control are:

• Accelerate, which increases the throttle angle. A short signal (< 1s) increases the throttle
angle by a single step (2-3km/h) and a long signal (> 1s) by gradual steps as long as the
signal is active. The final speed is then memorized and maintained by the cruise control.
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• Decelerate, which decreases the throttle angle. A short impulse signal (< 1s) slightly
decreases the vehicle speed (2-3km/h) while a long (> 1s) gradually decreases the vehicle
speed. The final speed is then stored and maintained.

• Cancel which cancels a maintain phase or another acceleration or deceleration action.

The cruise control is addressed by the CAN bus.

5.3.4.2 Electrical braking system

The braking system is a typical one, composed by a brake pedal, a vacuum booster, brake discs,
etc. However, an additional electrical control is available. The latter is used to control the vehicle
speed automatically. Anyway, the driver can still use the braking pedal. The electrical braking
system is addressed by analogical signals.

5.3.4.3 Steering motor

The steering motor is a multipolar permanent magnets synchronous brushless, three-phases motor
SKADDR 148-90 fromMotor Power Companyr which is directly mounted on the steering column
and helps to steer the vehicle wheel. The motor provides a stall torque (the torque which is
produced by the motor when the output rotational speed is zero) of 20Nm with a maximum
rotational speed of 150rad/min and is driven by its own servo drive. The performances of this
motor are certainly oversized for the considered application and the dimensions of the solution
may seem important. However, the specifications that must be reached requires this solution.
The motor has been sized to steer the wheel when the vehicle is stopped. The speed performances
are required for vehicle identification process when sinusoidal input at high frequency (≥ 5Hz)
are done. Finally, this motor, presented in Figure 5.4, has no mechanical transmission (no chain
and no belt) which is better for security purposes. The steering motor is connected to the CAN
bus.

Figure 5.4: Steering motor
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5.4 Vehicle model identification

The experimental results of the control solutions presented in Sections 5.5 and 5.6 requires a
model of the system to get the control signal based on a MPC approach. Then, LPV MPC
and NN MPC control solutions, presented in Section 2.4, require the identification of the model
parameters. The two following Sections 5.4.1 and 5.4.2 present the results of model parameters
estimation.

5.4.1 Bicycle model identification

5.4.1.1 Identification procedure

As mentioned in Section 1.4, the identification process requires four steps: the definition of the
protocol, the cost criteria definition, the parameter estimation and the validation process. These
steps will be detailed for the identification of the bicycle model as well as for the two neural
network models.

Definition of the protocol

The structure of the model that is identified, is the one presented in Section 3.3.1.4 adapted for
the automotive domain:





V̇y =
−CSf − CSr

M · Vx
Vy +

(−lf · CSf + lr · CSr

M · Vx
− Vx

)
r +

CSf

M
θw

ṙ =
−lf · CSf + lr · CSr

Jv · Vx
Vy +

(
−l2f · CSf − l2r · CSr

Jv · Vx
− Vx

)
r +

lf · CSf

Jv
θw

(5.1)

As presented in Figure 5.5, the vehicle model is composed of 1 input, the wheel angle θw,
1 varying parameter, the longitudinal speed Vx and 2 states, the lateral speed Vy and the yaw
rate r. The model requires the knowledge of 6 parameters, the cornering stiffness at the front
and rear axles (respectively CSf and CSr), the distance between the CG and the front and rear
axles (respectively lf and lr), the mass M of the vehicle and the inertia Jv.

LPV bicycle model

(CSf , CSr, lf , lr, M , Jv)

Vx

θw

Vy

r

Figure 5.5: Structure of the bicycle model

The lenghts lf and lr and the mass M of the vehicle are measured directly and the ob-
tained values are presented in Table 5.1. The values are obtained when two persons are in the
vehicle. Then, the parameter estimation process aims at identifying the values of the parame-
ters CSf , CSr and Jv. Nevertheless, it is possible to measure the value of Jv [Brossard, 2006]
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and [Caroux, 2007] but the estimation process has been preferred due the complexity of the
measurement process.

Symbol Measured value Unit

lf 1.12 m
lr 1.45 m
M 1577 kg

Table 5.1: Values of the measured parameters

Four signals are used for the identification process: the steering wheel angle θw, the lateral
speed Vy, the yaw rate r and the longitudinal speed Vx. The first is obtained with the steering
wheel angle sensor, a constant reduction ratio equal to 17 helps to convert the steering wheel
angle into the wheel angle. The measures of Vy, r and Vx are obtained with the RT3002.

The step which consists in recording the different signals has been repeated several times.
Thus, the identification procedure can be performed with these different measurements which
help to compare the identified parameters. Concerning the input signal, the driver performs
sinusoidal steering actions with varying frequencies from approximatively 0.15Hz to 2.5Hz (chirp
signals). The steering wheel angle input signal is presented in Figure 5.6. Moreover, due to
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Figure 5.6: Steering wheel angle input signal (identification signal)

the longitudinal speed dependency of the model, different recordings are performed at different
constant speed, varying from 5m/s to 15m/s.
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Cost criterion definition

As mentioned in Section 1.4 the cost criterion is a quadratic criterion defined by:

J =
Nsamp∑

t=1
(Vy meas(t)− Vy mod(t))

T (Vy meas(t)− Vy mod(t))

+
Nsamp∑

t=1
(r meas(t)− r mod(t))

T (r meas(t)− r mod(t))
(5.2)

where Nsamp corresponds to the number of samples in the signals and the subscript meas and

mod corresponds to the signals coming from respectively the measures and the model.

Parameter estimation

The parameter estimation is done with the Levenberg-Marquardt algorithm by the use of the
Matlabr System Identification Toolbox function “pem”.

Validation process

As soon as the optimization algorithm returns a value of the model parameters (the optimization
algorithm ends when the number of increment that has been defined is reached or when the vari-
ations of the identified parameter become insignificant), the validation process can be performed.
This last step aims at comparing the results of the identified model with the real system by using
a different input signal. Thus, the steering wheel angle that is used for the validation procedure
is presented in Figure 5.7.
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Figure 5.7: Steering wheel angle input signal (validation signal)

5.4.1.2 Results of the identification process

The results of the identification is characterized by the comparison of the validation signal with
the signal coming from the model. Figures 5.8 and 5.9 present the comparison for respectively
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Vy and r. It can be seen that the validation signal and the signal coming from the model are
very close. The fit is 85% for Vy and 80% for r.

The responses Vy and r obtained with the identified model are satisfying for the use in
control applications. For the signal r, the response of the model runs over the validation signal.
A difference which is approximately equal to 0.08rad/s is observed. This phenomenon is less
obvious for the signal Vy insofar as both signals (validation signal and response of the model)
have similar shape even for the maximal amplitudes. Nevertheless, Vy and r signals show an
important error at time t = 120s. For Vy, the validation signal goes to −0.9m/s and the response
of the model has a larger value with −1m/s while for r, the validation signal is only −0.9rad/s

and the response of the model reaches −1.2rad/s. This can be explained by the fact that at this
time, limits of the bicycle model are reached (the lateral acceleration gammaT is larger than
3m.s−2).
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Figure 5.8: Results of the identification for signal Vy

The identification procedure gives the possibility to estimate the values of the 3 parame-
ters. Different estimations have been done with different longitudinal speeds and concerning
the parameter Jv an important dispersion has been observed. Indeed, the lower identified value
is Jv = 1756kg.m2 while the bigger identified value is Jv = 3787kg.m2. In order to quantify
the impact of this important range of values, a sensitivity analysis is proposed. To do this, the
5 other parameters of the bicycle model are fixed (CSf = 62829N/rad, CSr = 96702N/rad,
lf = 1.12m, lr = 1.45m, M = 1577kg) and the results of the 2 outputs signals with the low and
high inertia are compared. The results are proposed in Figures 5.10 and 5.11.

It can be seen on Figures 5.10 and 5.11 that the obtained curves are very close. Indeed,
the value of the fit is 99% for Vy and 94% for r. Moreoever, the signal errors which correspond
respectively to the difference between the two Vy signals on the one hand and to the difference
between the two r signals on the other hand, are low with a maximum amplitude equal to
0.01m/s for Vy and equal to 0.08rad/s for r. This permits to conclude on the fact that, in the
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Figure 5.9: Results of the identification for signal r
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Figure 5.10: Results of sensitivity analysis with signal Vy
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Figure 5.11: Results of sensitivity analysis with signal r

proposed conditions, the influence of the parameter Jv on the behavior of the model is not very
important. As a conclusion, the final choice of the parameter is based on a mean value and
Jv = 2659kg.m2.

For a “bicycle” model, parameters CSf and CSr are very influential and it is known that these
parameters vary according to the solicitations. Then, for the estimation of the two parameters
CSf , CSr, a correlation between these values and the longitudinal speed has been remarked.
Figures 5.12 and 5.13 represent the evolution of the stiffnesses as a function of the longitudinal
speed. It can be noticed that a second order polynomial permits to fit the cornering stiffness
of the front axle CSf with the longitudinal speed Vx while a first order polynomial gives the
possibility to fit the cornering stiffness of the rear axle CSr with the longitudinal speed Vx. For
the parameter CSf , the chosen fitting function is CSf (Vx) = −354V 2

x +9979Vx− 1458 while the
relation between CSr and Vx is CSr(Vx) = 7146Vx + 21846.

5.4.2 Neural network model identification

5.4.2.1 Identification procedure

As done in the previous section, the four steps of the identification process will be presented.
Particularly, for the NN identification, the structure of the model is not fixed and this section
helps to chose the network configuration (the number of neurons in the hidden layer) and the
inputs of the network.

Definition of the protocol

Two different NN structures are presented in this section. The identification process helps to
compare the results based on different structures and to choose the most suitable number of
neurons of the hidden layer. The first NN structure considers three inputs (the wheel angle θw
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Figure 5.13: Fitting of the estimated values of CSr
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and two delayed inputs Vy(z−1) and r(z−1)) and two outputs (Vy and r). The main drawback of
this structure is the fact that the longitudinal speed of the vehicle is not considered. Indeed, it is
well-known that this quantity has a major influence on the system dynamics. Then, as mentioned
in [Qiang et al., 1999], the second structure includes an additional input Vx. This contribution
appears in the structure of the vehicle mathematical model and it is interesting to study the
influence of this extra input on the results of the identification. Finally, the two proposed
structures are presented in Figures 5.14 and 5.15 where w, wbias, W and Wbias are the weights
that must be identified. wbias and Wbias correspond to the weights of the bias, an additional
input for each neuron which helps to reinforce the learning of the network [Abdeslam, 2005].

NN model (structure 1)

(wstruc1, w
struc1
bias , W

struc1 and W
struc1
biais )

θw

Vy(z
−1)

r(z−1)

Vy

r

Figure 5.14: Description of the NN (structure 1)

NN model (structure 2)

(wstruc2, wstruc2
bias , W struc2 and W struc2

biais )

θw

Vy(z
−1)

r(z−1)

Vy

r

Vx

Figure 5.15: Description of the NN (structure 2)

Moreover, the influence of the number of neurons in the hidden layer is studied. The aim of
the NN model is to be used as a predictor in the NNMPC control solution. This control algorithm
requires an on line optimization, so a low number of neurons will reduce the calculation time.

The identification signal is not similar to those used for the identification of the LPV model
insofar as the longitudinal speed must vary. The chosen signals are presented in Figure 5.16.

Cost criterion definition

The cost criterion corresponds to the one used in Section 5.4.1.

Parameter estimation

The parameter estimation is based on the back propagation method presented in Section 1.4.4.
The process is computed with the function “batbp” that comes from the toolbox NNSYSID
(Neural Network SYstem IDentification) running on Matlabr.

Validation process

The validation signal corresponds to those used in Section 5.4.1.
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Figure 5.16: Presentation of the NN identification signal

5.4.2.2 Results of the identification process

The table 5.2 presents the NN identification results with both structures considering that the
number of neurons in the hidden layer (nCC) varies. The percentages represent the fit between
the NN model and the validation signal.

structure 1 structure 2

Vy r Vy r

nCC = 10 61% 71% 74% 75%
nCC = 50 73% 71% 79% 72%
nCC = 100 72% 70% 76% 69%
nCC = 300 72% 68% 73% 68%

Table 5.2: NN identification results

Three main points are deduced from the NN identification results:

• with a limited number of neurons, the NN is not competitive enough because the dynamics
of the system are not learned,

• NN with too many neurons reduces the ability of network generalization. The NN tends
to learn a particular sequence. This is called over learning,

• results show that the use of an additional input (the longitudinal speed Vx in this case)
helps to improve the fit.

Finally, the identification based on the bicycle model gives better results than the identifica-
tion based on NN model. It can be seen that the bicycle model helps to reach a fit of 85% for
Vy and 80% for r, while the best fit with the NN model is only 79% for Vy and 72% for r.
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As a conclusion, two models will be used for the prediction of the NN MPC control solution.
On the one hand, the NN model with structure 1 and nCC=50. On the other hand, the NN
model with structure 2 and nCC=50.

5.5 Longitudinal control: experimental results

5.5.1 Introduction

Nowadays, intelligent transportation systems (ITS) which consist in using synergistic technologies
and systems engineering concepts to develop improved transportation systems have an impor-
tant success. It gives the possibility to enhance safety, security and efficiency by, for instance,
designing traffic control systems, collision avoidance systems, etc. Here, attention is focused on
a particular ITS system which is the cruise control. This latter aims at controlling the speed of
the vehicle following the driver order or other external events. Different cruise controls can be
developed:

• common cruise control:
It consists in maintaining the vehicle speed at a speed pre-set by a driver. These kind of
systems are already installed in several usual cars.

• adaptive cruise control:
It consists in automatically adjusting the speed vehicle by maintaining a fixed distance
between two successive vehicles [Naranjo et al., 2003b].

• intelligent cruise control:
It consists in identifying road characteristics to adapt the speed of the vehicle
[Lusetti et al., 2008], [Daniel et al., 2009].

The cruise control application, developed in the frame of this thesis, belongs to the last kind of
cruise control (intelligent cruise control) and is a navigation-based longitudinal speed assistance
system. This system which has been done in collaboration with other members of the laboratory
[Daniel et al., 2009], consists of three main components:

• the maximum longitudinal speed profile generator (it provides Vx max):
This component aims at interpolating the digital map database points by a trajectory
generation process based on parametric cubic spline and providing from the trajectory a
continuous curvature which helps to define the maximum longitudinal speed profile (see
Section 5.5.2.1),

• the limit speed profile generator (it provides Vx desired):
This component uses the maximum longitudinal speed profile generator and integrates the
vehicle deceleration capability to generate a realistic speed profile (see Section 5.5.2.2),

• the speed controller:
This components aims at controlling the actuator to follow the desired speed Vx desired (see
Section 5.5.2.3).
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5.5.2 Navigation-based longitudinal speed assistance system

5.5.2.1 Maximum longitudinal speed profile generator

Trajectory generation and curvature estimation

In navigation-based applications, the main source of information is the digital map database.
Even if they store increasingly more data, their representation of roads is still vectorial: roads
are interpreted as a succession of shape points with irregular intervals of several metres. A con-
sequence of this representation is that a limit speed profile cannot be directly calculated from
the database information. Therefore, a trajectory generation process based on an interpolation
method must be performed. There are several interpolation methods, such as basic polynomial
interpolation ([Pauwelussen and Linardatos, 2008]), polar polynomial interpolation, B-Spline in-
terpolation ([Jung-Hoon et al., 2003]), Bi-arc interpolation, or methods based on the combination
of straight lines, clothoids and arc circles ([Wang et al., 2008]). Among all the different interpo-
lation methods, the Parametric Cubic Spline interpolation has been adopted ([Boor, 1978]). This
mathematical model, mostly used in computer graphics, provides smooth and curvature continu-
ous trajectories. Moreover, parametrization allows a two-dimensional trajectory calculation and
this interpolation only needs the coordinates of the shape points to provide a trajectory.

As it is a parametrized method, it is based on the calculation of two cubic Splines: one Spline
for the X Cartesian coordinate and the other for the Y Cartesian coordinate. The parametric
cubic Spline is then expressed as:

xi (t) = axit
3 + bxit

2 + cxit + dxi

yi (t) = ayit
3 + byit

2 + cyit + dyi

(5.3)

To ensure the smoothness of the trajectory and the continuity of the curvature, this method
calculates the trajectory under constraints. Each point which is to be interpolated, represents
a position constraint as each point must be included in the trajectory. Moreover, continuity
conditions on the first and the second derivatives of the trajectory at each point must be provided.
A Parametric Cubic Spline example interpolating 4 points is given in Figure 5.17. It shows the
continuity conditions on the first and second derivatives (ḟ(t) and f̈(t)). As they are located
respectively at the beginning and at the end of the Spline, points A and B have fixed second
derivative values. These values are called conditions in the literature. In this example, they are
equal to zero and so correspond to natural conditions.

This Parametric Cubic Spline method is used in real time to interpolate the digital map
database points located in the upcoming road of the vehicle.

The second step in the trajectory generation process is to extract the curvature from the
trajectory:

κ =
1
R

=
ÿ(t)ẋ(t)− ẍ(t)ẏ(t)

(ẋ(t)2 + ẏ(t)2)
3
2

(5.4)

Maximum speed profile

In the literature, several methods help to determine the maximum speed profile of a trajec-
tory using different reference speed models ([Glaser et al., 2007]). Here, a simplified model is
considered. Firstly, the elevation of the road is not taken into account in the chosen model.
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A

B

f3(t) =

{

Px3 = ax3t
3 + bx3t

2 + cx3t + dx3

Py3 = ay3t
3 + by3t

2 + cy3t + dy3

f2(t) =

{

Px2 = ax2t
3 + bx2t

2 + cx2t + dx2

Py2 = ay2t
3 + by2t

2 + cy2t + dy2

f1(t) =

{

Px1 = ax1t
3 + bx1t

2 + cx1t + dx1

Py1 = ay1t
3 + by1t

2 + cy1t + dy1

f̈4(t) = 0

f̈2(t) = f̈3(t)

ḟ2(t) = ḟ3(t)

f̈1(t) = f̈2(t)

ḟ1(t) = ḟ2(t)

f̈0(t) = 0

Figure 5.17: A Parametric Cubic Spline example

This information which is not included in the digital map database, has a slight impact on the
reference speed. Secondly, the road friction coefficient which characterizes the contact between
the tyres and the road is not involved in the computation of the maximum speed profile. The
main reasons for this choice are the difficulty to obtain this physical quantity in real-time and
the necessity of additional sensors which are costly for current standard vehicles. Thirdly, the
general environment of the vehicle is not taken in account: traffic signs, other vehicles, etc, are
not involved in the definition of the reference speed model. The driver determines if the used
conditions of such a system are adequate (limited traffic, good road visibility, ...) and can control
the system insofar as this assistance system can easily be switched off. This is necessary when
another vehicle appears or when there is a change in the traffic conditions. Further improvements
would be focused on the integration of the vehicle environment in the control system.

The vehicle acceleration, on a planar road, is always composed of two elements: the longi-
tudinal and the lateral acceleration. The accelerations are used by the driver to evaluate his
safety and comfort feeling. Considering bend conditions, it is commonly established that the
lateral acceleration is bounded by a typical maximum value of 3m/s2 ([Gallet et al., 2000]). The
second parameter of the simple reference speed model is the curvature which is extracted from
the generated trajectory. Using a simple model, the maximum speed profile is defined by:

Vx max =
√

γTmax

κ
(5.5)

with γTmax the maximal allowable lateral acceleration and κ the instantaneous road curvature.
As the lateral acceleration limitation is a fixed parameter in the reference speed model, only the
curvature determines the limit speed profile.

5.5.2.2 Limit speed profile generator

The maximum speed profile Vx max detailed in Section 5.5.2.1 cannot be directly used for the
braking state, insofar as the vehicle deceleration capabilities are not considered in this maximum
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speed profile. Indeed, when a sharp bend appears after a straight line, the maximum speed profile
changes suddenly without coherence to the braking capabilities. Two major drawbacks imply
the necessity of an improved solution which considers the vehicle longitudinal dynamics. On the
one hand, the braking action will be very hard. On the other hand, the required control signal
may exceed the maximal braking pressure. In this situation, the vehicle will enter the bend with
a non-secured speed, greater than the maximum speed and the vehicle passengers could be in
danger. To avoid such situation, the braking phase has been improved. The presented solution
aims at taking account of the deceleration criterion. The maximum speed profile is combined
with a deceleration profile to improve comfort and safety. This solution helps to limit, in real-
time, the maximum deceleration, so that the braking system can follow the calculated profile.
Moreover, this deceleration profile allows the definition of the deceleration distance. Finally, the
chosen deceleration profile reproduces the braking sequence from a common driver performing
a smooth braking. The deceleration gradually increases up to a maximum and then decreases
back to zero, giving the following triangular deceleration representation (cf. Figure 5.18).

Vx desired(t), γL(t)

Vcurrent

Vnew

t0

−γLmax

dbraking =
∫ t2

t0
Vx desired(t)dt

t1 t2 t

Figure 5.18: Deceleration and speed profile

Based on this deceleration profile and considering the positioning and speed of the vehicle,
it is possible to determine if the different speeds ahead of the vehicle defined by the limit speed
profile are reachable or not. To test the reachability of the limit speed profile points, the definition
of the braking distance (dbraking) is used:

dbraking =
3

γLmax

(∆V )2 + 2(2Vcurrent − Vnew)
∆V

γLmax

(5.6)

Considering ∆V = Vnew−Vcurrent with Vnew the speed to be reached, the maximum allowable
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deceleration of γLmax = 3m/s2 and Vcurrent the current vehicle speed, the braking distance
dbraking helps to calculate the distance necessary to reach the speed defined by the limit speed
profile. If the different speeds are reachable, in other words, if the distance between the vehicle
and the considered point is larger than dbraking, the vehicle continues to accelerate or to maintain
the speed. If not, the vehicle decelerates following the reference profile which is calculated based
on the integration of the deceleration profile, so that:

Vx desired for t ∈ [t0, t1] =
γ2

Lmax

2(Vnew − Vold)
t2 + Vcurrent

Vx desired for t ∈ [t1, t2] =
γ2

Lmax

2(Vnew − Vold)
t2 + 2γLmaxt + 2Vcurrent − Vnew

(5.7)

Finally, this limit speed profile which considers the vehicle limitations is safer and more
realistic than the maximum speed profile directly obtained from the trajectory. Now, the limit
speed profile, called Vx desired can be used as an input of the speed controller. Here, it is important
to insist on the fact that the proposed deceleration profile is used to define in real-time the speed
profile. This is possible insofar as no optimization algorithm is used for this task.

5.5.2.3 Speed controller

The speed controller, proposed in this section is an improvement of the solution detailed in
[Lauffenburger, 2002]. Here, the control solution is based on a Finite State Machine (FSM). This
latter consists of a triplet (Q,Σ, T ) such that Q is a finite set of states qi, Σ a finite set of events σi

and T the transition functions which specify the set of possible states following a particular event.
In the present application, the FSM is defined with Q = {Accelerating, Maintaining, Braking}
where:

• Accelerating occurs when an increase in speed is requested, when the driver leaves a bend
or when the current speed does not correspond to the driver’s satisfaction,

• Maintaining occurs when the vehicle speed corresponds to the limitation or when it fulfils
the driver’s satisfaction,

• Braking occurs when the speed limitation decreases or when the driver negotiates a bend.

Considering the fact that basic sensors are used (the speed sensor used for this application is
available in all usual cars), imprecise and inaccurate measurements must be taken into account.
Consequently, the FSM which uses these measurements may be subjected to state oscillations. To
cope with the problem, the FSM and particularly the transition conditions of the Maintaining
state consider a tolerance speed ∆. This latter has been added, so that, for example, the
transition conditions between the Maintaining state and the Accelerating state become Vx <

Vx desired −∆. The FSM developed for this application is shown in Figure 5.19.
Then, the FSM gives the information to the appropriate actuator, the CC for Accelerating

and Maintaining and the BS for Braking to provide uCC and uBS (cf. Figure 5.20).
Finally, an additional constraint has been used. This latter aims at reproducing the behaviour

of the driver. Considering common driving conditions, the driver takes account of information
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Accelerating Maintaining Braking

Vx < Vx desired Vx = Vx desired ± ∆ Vx < Vx desired

Vx = Vx desired Vx > Vx desired + ∆

Vx < Vx desired − ∆ Vx = Vx desired

Figure 5.19: Presentation of the FSM
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Actuators

controller

Vehicle
dynamics

Vx desired Vx
qi, σi uCC , uBS

Speed controller

Figure 5.20: Speed control loop

ahead the vehicle to choose an appropriate speed. The same procedure has been implemented in
the longitudinal speed controller with the use of a Look Ahead Distance (LAD). This distance
helps to consider a reference speed at a further limit speed profile point, thus introducing the
driver foreseeing ability. Drivers usually need 1 second to react. With an additional safety
margin of 1 second, the control system is also considering a reference speed located at 2 seconds
further on the road. The LAD is also defined as: LAD = 2V (t). The braking controller uses an
improved definition of the error (LAD dependent), so that:

ε = Vx desired(XLAD, YLAD)− Vx(t) (5.8)

with Vx desired(XLAD, YLAD) the reference speed of a trajectory point, situated ahead of the
vehicle at a distance dLAD. In other words, the (XLAD, YLAD)(t) trajectory point is defined by
solving

dLAD =
√

(x(t)−XLAD(t))2 + (y(t)− YLAD(t))2 (5.9)

Using this LAD, the system reacts in advance and control is less affected by vehicle response
time.

5.5.3 Experimental results

The results obtained with the proposed longitudinal control solution are presented in this section.
First, the road that has been taken is presented in Figure 5.21.

It can be seen that the considered driving situation is composed of four bends and some little
“oscillations” of the road are observed between the second and the third bend.

Considering this trajectory, the longitudinal controller has been tested and the results are
plotted on Figure 5.22.

161



Chapter 5. Automatic guidance of rolling systems

Trajectory

Departure point

Arrival point

1st bend

2nd bend

3rd bend

4th bend

X coordinate (m)

Y
co

or
d
in

at
e

(m
)

0

100

200

300

400

500

0 100 200 300 400 500
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Figure 5.22: Longitudinal control results
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On the first plot, the vehicle desired speed Vx desired and the real vehicle speed Vx are pre-
sented. The second plot represents the FSM states changes.

Between the first and second bend (between Time = 15 and 25 seconds) and the third and
fourth bend (between Time = 55 and 70 seconds), a large difference can be seen between the
desired speed Vx desired and the real vehicle speed Vx. This is due to the fact that the signal
Vx desired takes account of the vehicle longitudinal dynamics only for the deceleration phase.
Here, the vehicle is in a straight line and the speed that the vehicle has to reach corresponds to
the maximum allowed speed for this test which is 70km/h. The proper functioning of the control
solution for these periods is seen with the results of the FSM. Indeed, during these two periods
(between Time = 15 and 25 seconds and Time = 55 and 70 seconds), Vx desired is lower than Vx

which explains that the FSM is in the Accelerating phase.
Between Time = 35 and 50 seconds, two important conclusions have to be done:

• This part of the travel corresponds to the road between the second and the third bend and
as said before, some little “oscillations” of the road can be observed. This explains the fact
that the signal Vx desired varies a lot during this period in order to be representative of this
succession of little bends.

• Despite a lot of variations of the signal Vx desired, it can be seen that the FSM does not
jump from one state to another to follow the desired speed. This has been possible by
the introduction of the parameter ∆ which gives the possibility to stay in the maintaining
step despite the variation of the desired speed. This phenomenon is very pleasant for the
vehicle passenger, insofar of the behaviour of the vehicle is very smooth.

Finally, during the braking phase, it can be seen that the vehicle speed is close to the desired
speed Vx desired. This is the case between Time = 5 and 15s, Time = 25 and 30 seconds, Time =
47 and 52 seconds and Time = 70 and 75 seconds. Moreover, as it has been defined in Figure
5.18, it can be shown that the shape of the vehicle speed in Figure 5.22 corresponds to a second
order polynomial. Thus, the speed decreases slowly at the beginning. Then, a hard braking is
applied, the vehicle speed decreases rapidly. At the end of the braking phase, the speed reaches
slowly the desired speed.

5.5.4 Conclusion

This section has presented a longitudinal assistance system based on the use of the basic elements
of a standard vehicle: a navigation system, a vehicle speed sensor, a cruise control and a braking
system. Using the information provided by the navigation system, a specific trajectory generation
process helps to obtain a trajectory. The information contained in this trajectory is fused with a
deceleration profile and allows the real-time calculation of the limit speed profile of the upcoming
road. The latter is then compared with the vehicle speed to determine the current state of the
FSM and appropriate control signals. Dynamic tests with the MIAM test vehicle have shown that
the longitudinal assistance system works correctly. Particularly, attention has been focused here
in the subjective feel of the passengers. The proposed solution gives the possibility to have a very
smooth behaviour. Indeed, the braking phase is very pleasant due to the imposed deceleration
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profile. Moreover, the addition of the parameter ∆ certainly limits the reactivity of the system,
but oscillations between the different states are limited, which increases the passenger comfort.

5.6 Lateral control: experimental results

5.6.1 Introduction

In the literature, different solutions are dedicated to lateral control:

• Lane departure avoidance: this solution aims at keeping the vehicle in the lane
[Minoiu et al., 2006],

• Autonomous vehicle: this solution aims at controlling the vehicle lateral dynamics based
on GPS information.

This section focuses on the last item dedicated to autonomous vehicles which use GPS informa-
tion.

Previously, for the longitudinal control, the limit speed profile was given in real-time. Indeed,
based on the position of the vehicle, given in real-time by the GPS system, shape points in front
of the vehicle were stored and resulted to a trajectory (cf. Section 5.5.2.1) and finally to the limit
speed profile (cf. Section 5.5.2.2). For the considered application, more accuracy is required.
For this reason, the GPS receiver is replaced by a DGPS receiver. Indeed, for the longitudinal
control, a positioning error is not relevant. For instance, if the braking phase begins 5m after
the suitable beginning, the vehicle will enter the bend with a largest speed. Nevertheless, for
lateral applications, a positioning error leads to undesirable situations insofar as the vehicle may
go outside the road.

For the lateral control application presented in this section, the control strategy considers a
pre-registered path. Indeed, every test campaign begins with a trajectory registration phase. A
path is defined and the vehicle is driven at very low speed and using the DGPS sensor, various
points that constitute the path are recorded. This path will be used as an input of the different
control strategies developed.

This Section aims at comparing 3 control solutions (FC algorithm, LPV MPC algorithm and
NN MPC algorithm) for path following, based on experimental results. Considering a path P to
be followed, defined in the ground-fixed axes ( ~X,~Y ), the aim of the controller is to follow this
reference path.

The path which has been chosen to validate the different control algorithms is presented
in Figure 5.23. Two successive bends can be shown on the path; the first is turning slowly
(that means with a large radius of curvature) while the second is more accentuated (that means
with a small radius of curvature). To characterize the capability of the control solution, a plot
which represents the distance between the path and each position of the vehicle is given. This
distance is called the “error distance”. The tests are done for different longitudinal speeds from
approximately 4m/s to 10m/s.
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Figure 5.23: Path to be followed
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5.6.2 “Follow the Carrot” results

5.6.2.1 Tuning of the control solution

This control method based on a geometric criterion only requires the definition of two parameters
as defined in Section 3.2.3.3 (the look ahead distance LAD and the proportional gain kp). The
tuning of the control law, based on an heuristic approach, gave the possibility to obtain the
following values: LAD = 5m and kp = 0.2.

5.6.2.2 Experimental results

Figures 5.24 and 5.25 present the experimental results obtained with the FC method. It can
be seen that the results are satisfying. At 4m/s the maximum error distance is 35cm while the
maximum is approximately 70cm at 8m/s. However, Figure 5.25 shows that the response is
oscillating with large amplitude (the maximum error is 70cm) from time t = 26s and the vehicle
has been stabilized again after. The lateral speed Vy and the yaw rate r have large amplitudes,
insofar as the maximum value of Vy is 0.5m/s and the maximum value of r is 0.4rad/s. Likewise,
the steering wheel signal changes suddenly from 145◦ to −110◦ in 1.2s when time is equal to 29s;
this is a very fast control signal which is not pleasant for the vehicle passengers. Indeed, the
control law has some difficulties to provide the good control inputs for the second bend which is
more accentuated.
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Figure 5.24: Lateral control results with FC at 4m/s
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Figure 5.25: Lateral control results with FC at 8m/s
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Figure 5.26 shows that this control solution is not able to follow the proposed path at 10m/s.
The vehicle is not able to go through the first bend. At time t = 10s, when the first bend begins,
the vehicle oscillates around the path and leaves it. At time t = 18s, the yaw rate reaches an
important value equal to 1rad/s. Then, by making the assumption that the variation of the
slip angle is low (less than 0.05 rad/s in this test), the lateral acceleration is approximated by
γT ≈ Vxψ̇ and then γT ≈ 7m/s2. This clearly shows that the vehicle is in a critical situation
insofar as the lateral acceleration is high.
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Figure 5.26: Lateral control results with FC at 10m/s

The trajectory which has been taken by the vehicle is proposed in Figure 5.27.

5.6.3 LPV MPC results

5.6.3.1 Presentation of the control solution

Cost criterion of the MPC

To follow the path, the main physical quantity which is taken into account is the lateral displace-
ment of the vehicle, commonly called y(t). The aim of the MPC solution is to find the optimal
control signal θw which helps to follow the points yref (i) of the path P. Then, the cost criterion
is defined by:

J(k) = Q

Np∑

n=1

(ŷ(k + n)− yref (k + n))2 + R
Nc∑

n=0

θw(k + n)2 (5.10)
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Figure 5.27: Path with FC at 10m/s

The following paragraph 5.6.3.1 presents the method to obtain the vehicle lateral displacement
prediction based on the vehicle dynamic prediction and the choice of the reference points yref(i)

of the path.

Prediction of the vehicle positions

The prediction of y on the prediction horizon is based on vehicle dynamic signals and can be
expressed as:

ẏ(t) = Vy(t)cos(ψ(t)) + Vx(t)sin(ψ(t)) (5.11)

such that ψ(t) is the heading angle of the vehicle defined by:

ψ̇(t) = r(t) (5.12)

At each sample time, the path is projected in a local coordinate whose origin is the vehicle
CG, the axis ~x coincides with the axis of the vehicle and the axis ~y is defined laterally from the
vehicle. The Figure 5.28 presents the path in the ground fixed axes and the new coordinates
(~x,~y).

Considering the hypothesis that the heading angle ψ(t) stays relatively small on the prediction
horizon, the equation (5.11) is linearised considering usual trigonometric function simplifications:

ẏ(t) ≈ Vy(t) + Vx(t)ψ(t) (5.13)

Prediction of the vehicle dynamics

As it can be seen in equations (5.12) and (5.13), the vehicle dynamic signals r(t) and Vy(t) are
used to obtain the lateral displacement of the vehicle. The LPV vehicle model, identified in
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~X

~Y

~x

~y

P

ψ(t)

Figure 5.28: Change of coordinates

Section 5.4.1 helps to describe the vehicle dynamics. Finally, the prediction model is a linear
LPV model which has 1 input (θw), 1 output (y), 4 states (Vy, r , y and ψ) and 1 varying
parameter (Vx) such that:





V̇y

ṙ

ẏ

ψ̇





=




−CSf (Vx)− CSr(Vx)
MVx

−lfCSf (Vx) + lrCSr(Vx)
MVx

− Vx 0 0

−lfCSf (Vx) + lrCSr(Vx)
Jv

−l2fCSf (Vx)− l2rCSr(Vx)
JvVx

− Vx 0 0

1 0 0 Vx

0 0 1 0








Vy

r

y

ψ





+




CSf (Vx)
M

lf · CSf (Vx)
Jv

0
0




θw

(5.14)

Finally, this model is sampled with a simple first order approximation of the derivative such
that:





Vy(k + 1)
r(k + 1)
y(k + 1)
ψ(k + 1)





= Ak





Vy(k)
r(k)
y(k)
ψ(k)





+ Bkθw(k) (5.15)

with

Ak =




−CSf (Vx)− CSr(Vx)
MVx

Ts + 1
(−lfCSf (Vx) + lrCSr(Vx)

MVx
− Vx

)
Ts 0 0

−lfCSf (Vx) + lrCSr(Vx)
Jv

Ts

(
−l2fCSf (Vx)− l2rCSr(Vx)

JvVx
− Vx

)
Ts + 1 0 0

Ts 0 1 VxTs

0 0 Ts 1
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Bk =




CSf (Vx)
M

Ts

lfCSf (Vx)
Jv

Ts

0
0




and Ts the sample time.

Reference point on the path

The cost criterion defined in equation (5.10) requires Np reference points yref from the path P.
First the point yref (0), which is not used in the cost criterion is defined. This point is located at
the intersection between the path and the ~y axis. It is used to determine the Np points yref (k)
of the path. Each point is separated by VxTs in the direction ~x. The Figure 5.29 presents these
considered points.

~X

~Y

~x

~y

P

VxTe

VxTe

VxTe

VxTe

yref (1) yref (2)
yref (3)

yref (4)

yref (Np)

yref (0)

Figure 5.29: Definition of the reference points

5.6.3.2 LPV MPC path following: experimental results

Tuning of the LPV MPC control solution

The controller runs in an AutoBoxr system, equipped with a DS1005 processor board with a
sample time of 50ms. It is implemented as a C-coded S-Function, using the QP solver routine
available in [MathWorks, 2005], based on the publicly available Dantzig-Wolfe’s algorithm. The
prediction horizon and the control horizon have the same length equal to 15 samples. A constraint
is used to limit the maximum steering wheel angle (the maximum hand wheel angle is 350◦) and
then mechanically protect the steering column.

The tuning of the control solution has shown that the weightings Q and R are of the highest
importance. To find the more appropriated values and to facilitate the methodology, Q is con-
sidered fixed and R varies. On the one hand, a low value of R generates an aggressive control
insofar as the resulting angles and rotational speeds are high. This case is interesting when a
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quick reaction is required or when an important input is required to let the vehicle move. How-
ever, it has been noticed that oscillations may appear in such conditions. On the other hand,
an important value of R allows a smoother control. Here, angles and rotational speeds are low.
Such a setting is preferred when a small input leads to a strong reaction of the system. If such
a value of R helps to get a satisfying behaviour of the vehicle, the control is applied very late.
Indeed, the optimization tries to limit the control without considering the path error.

It is thus reasonable to define different tunings for low speed (3m/s) conditions and high speed
(10m/s) conditions. The driver remarks easily that at low speed, an important hand wheel angle
is required to change the vehicle direction. Nevertheless, at high speed, a weak movement of the
hand wheel creates a significant lateral movement of the vehicle. As a conclusion, it has been
decided to fix Q such that Q = 2 and to link the value of R with the longitudinal speed.

Based on this consideration, tests have been done to identify the relationship between R and
Vx. These latter have been performed at different forward velocities and for each speed the more
suitable value of R is kept. Then, the obtained values of R for the different speeds are used to
find a fitting function. Finally, the relation is R = 2.25×V 2

x −9.8×Vx +26.8 has been identified.
This tuning helps to reproduce the behaviour of the driver. Namely, at low speed the value of R
is small such that the control is able to propose large variations. At high speed, the value of R is
high; so the control is weak due to the high sensibility of the vehicle in such driving situations.

Finally, the LPV model of equation (5.14) is transformed into an LTI model at each sample
time by considering the vehicle speed constant on the prediction horizon. This assumption is
valid, due to the sample time that has been chosen (50ms). With a prediction of 15 samples and
a sample time of 50ms, it is considered that the longitudinal speed Vx is constant for a maximum
period 0.75s. This assumption helps to obtain a constrained QP problem.

Experimental results

Figures 5.30, 5.31 and 5.32 present the experimental results obtained with the LPVMPCmethod.

The experimental results which are obtained with the LPV MPC method are satisfying for
the different speeds. At 4m/s, the error distance is less than 30cm excepted at time t = 42s,
when the vehicle exits the second bend. A similar behaviour is observed at 8m/s. For this
experimental result, the error distance is approximately 30cm while a pick of 90cm appears at
the exit of the second bend. At this instant, the lateral speed reaches 0.25m/s and the yaw rate
is equal to 0.4rad/s but it can be observed that the control is able to reduce immediately the
error distance insofar as it is equal to 30cm just after the second bend. A similar behaviour
is observed at 10m/s. This time, the error distance is approximately 45cm for the first bend.
However, the vehicle has some difficulties to exit the second bend. A pick at 1.5m is observed,
thereafter the vehicle oscillates around the path and the different signals Vy, r and θw have an
oscillating shape.

For these different experimental results, the behaviour of the vehicle is very pleasant, apart
from the oscillations which are felt by the passengers of the vehicle at high speed (10m/s). The
steering wheel control is smooth and the trajectory followed is regular without hard changes of
directions.
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Figure 5.30: Lateral control results with LPV MPC method at 4m/s
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Figure 5.31: Lateral control results with LPV MPC method at 8m/s
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Figure 5.32: Lateral control results with LPV MPC method at 10m/s
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5.6.4 NNMPC results

5.6.4.1 Presentation of the control solution

Section 5.6.3.1 presented the different components which help to build the LPV MPC control
solution, namely the cost criterion, the vehicle positions prediction, the vehicle dynamics pre-
diction and the path reference point getting. Concerning the NNMPC control solution only the
vehicle dynamics prediction is changing. Indeed, the estimated values of the states Vy and r are
obtained with the NN presented in Section 5.4.2. For the two NN proposed structures (the NN
with three inputs presented in Figure 5.14 and the NN with four inputs presented in Section
5.15), a local linearisation is proposed and as presented in Section 2.4.3.2, the discrete prediction
model becomes:





Vy(k + 1)
r(k + 1)
y(k + 1)
ψ(k + 1)





=




b0 11 b0 12 0 0
b0 21 b0 22 0 0
Ts 0 1 VxTs

0 Ts 0 1








Vy(k)
r(k)
y(k)
ψ(k)





+




c0 1

c0 2

0
0




θw +




a0 1

a0 2

0
0




(5.16)

5.6.4.2 NNMPC path following: experimental results

Tuning of the NNMPC control solution

The tuning of the two control solutions based on NNMPC (with NN structures 1 and 2) are
similar to the LPV MPC control solution. Here again, the optimisation algorithm is a C-coded
S-Function using the Dantzig-Wolfe’s algorithm. Concerning the two horizons (prediction and
control) an equivalent tuning is considered insofar as Np = Nu = 15. For the weighting Q and
R comparable remarks can be done. Numerous tests on the road gave the final tuning (Q = 2
and R = 3.4V 2

x − 14.7Vx + 49.6).

Experimental results

Figures 5.33, 5.34 and 5.35 present the experimental results obtained with the NNMPC method
with the structure 1 (the NN used for the prediction considers 3 inputs).

The experimental tests with the NNMPC method considering the NN structure 1 give satis-
fying results for the different speeds. For the two tests at 4m/s and 8m/s, close responses are
obtained. The error distance is approximately 40cm with picks at the bend level. Contrariwise
to other control methods, here the vehicle seems to cut corners. At 10m/s, the error distance
is thin, expect during bend negotiation. Considering the steering wheel angle, these test results
give the possibility to show that the control signals are very smooth with low amplitudes (only
60◦ in the second bend). These tests particularly highlight the difficulties which have been en-
countered during the tuning phase. Indeed, the value of R has been chosen such that it is Vx

depending and several tests are required to find the best value.
Figures 5.36, 5.37 and 5.38 present the experimental results obtained with the NNMPC

method with the structure 2 (the NN used for the prediction considers 4 inputs).
The tests with the NNMPC method considering the NN structure 2 help to achieve convincing

experimental results. The three plots show that the vehicle is able to follow the road. As for
all the other control solutions, the vehicle tends to move away from the road when it enters the
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Figure 5.33: Lateral control results with NNMPC method at 4m/s (structure 1)
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Figure 5.34: Lateral control results with NNMPC method at 8m/s (structure 1)
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Figure 5.35: Lateral control results with NNMPC method at 10m/s (structure 1)
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Figure 5.36: Lateral control results with NNMPC method at 4m/s (structure 2)
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Figure 5.37: Lateral control results with NNMPC method at 8m/s (structure 2)
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Figure 5.38: Lateral control results with NNMPC method at 10m/s (structure 2)
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bend. The results obtained at 8m/s and 10m/s are the best results. However, the response at
4m/s is certainly not optimal. It could be interesting to tune the value of R more precisely.

5.6.5 Remarks on the lateral control solutions

The FC method, based on geometrical concepts, aims at choosing a carrot point in front of
the vehicle and comparing the direction of the vehicle with the direction of the carrot point.
The control signal is proportional to the error angle, obtained as the difference between the two
previous directions. The three other methods are based on MPC which needs 5 steps in its
process, the prediction of the system evolution, the definition of the reference trajectory, the
definition of the cost criteria, the minimization of the cost criteria and the application of the first
term of the optimal solution. The main difference between the three controllers (LPV MPC,
NNMPC with structure 1 and NNMPC with structure 2) is the used prediction model. The
LPV MPC solution uses a LPV model expressed on the state space form. The two other MPC
methods are based on NN predictions. The first based on structure 1 has only three inputs while
the second takes into account an additional input which is the longitudinal speed of the vehicle
Vx.

The presented results show that the geometrical method gives the less acceptable results
insofar as the vehicle cannot be stabilized at high speed. This conclusion seems normal insofar
as the geometrical approach considers only one particular point of the path while the other
methods take account of 15 points. Nevertheless, it could be possible to improve the results
of the control solution by thinking about an evolution of the proposed solution. This could be
done with two evolutions. On the one hand, the proportional links between the control and the
angle εEO, the orientation error between the vehicle and the carrot point, may be improved such
that the parameter kp evolves as a function of the longitudinal speed Vx. On the other hand, as
proposed in Section 3.2.3.3, it could be interesting to work over the lateral distance between the
vehicle and the path. Moreover, the control solutions based on MPC has a satisfying behaviour.
The different plots presented in Sections 5.6.3.2 and 5.6.4.2 show that the vehicle behaviour is
good insofar as for the different speeds, the error distance is not larger than 1.5m expect for
LPV MPC solution at 10m/s. Yet, the presented experimental results highlight the fact that
the closed-loop systems are very close. It is difficult to select one of the three solutions. But, due
to the very good response of the closed-loop system with the NNMPC solution with structure 2
at 10m/s, a preference goes towards this solution. The fact that an additional input of the NN
is considered may improve the obtained results.

Table 5.3 summarizes the different properties of the implemented control solutions.

To conclude this section, it is important to keep in mind the two following points. On the one
hand, the tuning of the control solutions, especially the MPC solutions, is a long and difficult
task. It has been remarked that the weightings of the cost criterion have a relationship with the
longitudinal speed Vx. But, with the used model, the simulation step does not allow to highlight
this relationship. Indeed, excellent results have been found in simulations considering fixed
weighting values. In other word, a more accurate simulation model would help the development
step and limit the tests on road. On the other hand, it is essential to insist on the main
drawback of the MPC solution which is the on-line resolution of the optimization problem.
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For the proposed solutions, the optimization is facilitated insofar as the model are linearised.
Nevertheless, difficulties have been encountered during the programming step to reach the final
solution with a sample time equal to 0.05s and a prediction horizon of 15 samples.

5.7 Conclusion

This chapter presented different control solutions which gives the possibility to automatise the
movement of a rolling system. It was not possible to apply the proposed algorithm on a real
A/C then it has been decided to transpose the solution on a road vehicle. After giving up the
two parts of control strategy (one part dedicated to the control of the longitudinal dynamics
and the other dedicated to the lateral dynamics), the test vehicle which helps to validate the
proposed control solutions was presented. The acquisition system, the actuators and the sensors
which gives the possibility to identify the vehicle dynamics and to implement the longitudinal
and lateral algorithms were presented in details. An identification procedure has been required
insofar as the lateral control solution are based on MPC. Different models have been identified, a
LPV state space model and two different NN models. A particularity of the LPV model must be
underlined, insofar as a relation between the longitudinal speed and the front and rear cornering
stiffnesses has been identified. Next, the experimental results of the longitudinal and the lateral
control solutions have been presented. The longitudinal control is based on a finite state machine
and a simple PID is used to control the braking actuator. The main particularity of the solution
lies in the nature of the reference speed. It is obtained in real-time, through a digital database
and an additional step gives the possibility to constrain it. Concerning, the lateral control, four
controllers have been implemented and presented (FC, LPV MPC, NNMPC with NN structure 1
and NNMPC with NN structure 2). A path has been pre-registered and the different algorithms
have been compared. Finally, the three algorithms based on MPC give the best results. The
closed-loop responses are very close but the solution based on NNMPC with structure 2 has been
preferred because the response at high speed was the best.

Two major perspectives can be considered. The first will aim at combining the two control
loops. In Section 5.5 the control of speed is automated while the driver has to steer the vehicle.
In Section 5.6, the lateral dynamics are automatically controlled but the driver has to brake and
to accelerate the vehicle. This evolution will give the possibility to let the vehicle move without
driver. The second perspective could be to integrate the environment in the control solution.
Here, it is considered that the vehicle is alone on the road and that the control is only based on
road shape data.
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Method Results Specificities Advantages Drawbacks

FC
does not give
satisfying results
at high speed

based on geo-
metrical charac-
teristic method
where the
system to be
controlled is not
considered

very simple, only
2 tuning param-
eters

does not allow to
reach sufficient
performances

LPV MPC
gives the possi-
bility to follow
the path

based on model
solution which
uses a LPV
model and QP
optimization
(at each sam-
ple time the
varying param-
eter is fixed on
the prediction
horizon)

the prediction
based on a LPV
model helps to
provide a good
control signal

requires an on
line optimization
which is prob-
lematic for real
time implemen-
tation

NNMPC
with

structure 1
and 2

gives the possi-
bility to follow
the path

based on model
solution which
uses a NN model
and QP opti-
mization (at
each sample
time the NN
which is non
linear, is lin-
earised over
the prediction
horizon)

the prediction
based on a non-
linear NN model
helps to provide
a good control
signal

requires an on
line optimization
which is prob-
lematic for real
time implemen-
tation

Table 5.3: comparison of the lateral control methods
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A conclusion is simply the place where
someone got tired of thinking.

Arthur Block

Conclusion

The thesis work presented in this manuscript was dedicated to the control of an electromechanical
actuator for steering the nose landing gear wheels and thus, giving the possibility to developed
algorithms for aircraft automatic guidance based on this more reliable and more redundant
actuator. Currently, hydraulic actuators, available on the aircraft, have several drawbacks that
the electromechanical actuator, proposed in the DRESS European project, can remedy. Indeed,
this latter associated with a new modular architecture based on a digital bus network would
allow to:

• reduce the weight of the whole steering system which is an important advantage considering
environmental aspects;

• improve safety by the use of a redundant system (two paths mechanical system, digital bus
with reconfiguration capabilities);

• reduce maintenance time and costs.

The main contributions of this thesis concern the development of control strategies for the
nose landing gear actuator (steering of the nose landing gear wheels and damping of the shimmy
phenomenon) and of solutions to achieve automated rolling systems (control of the longitudinal
and lateral dynamics). The different solutions that have been proposed are based on common the-
oretical tools, robust gain scheduling control, non-linear predictive control or non-linear adaptive
control. They have given the possibility to reach interesting results validated by experimentations
in aeronautic and automotive domains. Indeed, the algorithms developed for the control of the
landing gear are corroborated through real tests performed on the DRESS test bench. Moreover,
the longitudinal and lateral control solutions detailed in this thesis have been implemented and
evaluated thanks to the test vehicle of the MIPS laboratory.

The objective of the manuscript was to introduce the different theoretical tools, to present
the application context and to detail the control solutions developed in the aeronautical and
automotive domains. Then, this work was presented in five chapters:

• the first chapter entitled “Which model for which system?” defined the concept of “system”
and “model”. Then, solutions which helped to find an “appropriate” model based on the
knowledge of the system and on the objectives of this model were proposed;

• in the second chapter, control solutions which take account of the specificities of the models,
had been detailed. The three control solutions presented aimed at providing the reader the
essential information to understand the developed solutions;
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• the third chapter gave details concerning the context of the applications. First, the the-
sis framework was introduced. Then, state-of-art studie was presented. Finally, models
required to perform simulations and synthesize controllers are presented;

• the fourth chapter has described the solutions proposed to control the electromechani-
cal nose landing gear steering actuator for both steering and shimmy damping purposes.
Particularly, experimental results, performed with the DRESS test bench were included;

• in the fifth chapter, solutions for the control of longitudinal and lateral dynamics of a car
vehicle had been described and experimental results had been proposed.

Finally, among different important points, it would be interesting to investigate particular
tools that have been just mentioned in this manuscript and to go further in validation of the
proposed control solutions.
Chapters 2 and 4 dealt with H∞ control solution applied for LPV system. In this field, less
conservative formulation would be tested. For example the author proposes to take account
of the varying parameters speed or to consider LMI’s formulation based on multiple Lyapunov
functions.
Considering the control of the nose landing gear, it had been shown that a tracking error persisted
with the developed control solution. The author proposes to investigate a feedback-feedforward
robust structure, insofar as the feedforward controller is well-known to improve tracking perfor-
mance.
The tyre characteristics may be expressed by a piecewise linear model as suggested in Appendix
A. Then, the author proposes to use such model for the prediction in the predictive control
strategy of Chapter 5. This proposition improves the prediction of the system and the control
solution presented in Section 2.4.3.3 may give the possibility to obtain the control signal. The
author suggests to improve the vehicle lateral dynamics control solution in order to apply it for
aeronautic applications. Indeed, the trajectory of an A/C can be controlled by the nose landing
gear wheel but also by the use of the rudder, the differential braking or .... The SISO system
studied in Chapter 5 could be extended to a MISO system which takes account of many inputs.
Moreover, the power consumption of each inputs or their limitation could be considered and
taken into account by the constrained optimal control solution.
Finally, the two longitudinal and lateral control solutions proposed in chapter 5, could be coupled
in order to obtain a fully automatic vehicle.
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Appendix A

Tyre Modelling

A.1 Introduction

The tyre is a very complex system [Pouly et al., 2006] involved in most ground vehicles. It is a
key component of vehicles or aircraft insofar as every effort (except aerodynamic forces) applied
on the system are generated at the wheel/road interface. It performs three main functions
[Gillespie, 1992]:

• supporting the vertical load of the vehicle and recover the ground deformations;

• developing longitudinal forces that accelerate and brake the vehicle;

• developing lateral forces which give the possibility to steer the vehicle.

Moreover, it is made of synthetic and / or metal fibbers and rubber; this results to a system
very difficult to model. This appendix proposes the description of some models available in the
literature.

As part of this work, the study of the tyre is limited to its lateral behaviour and the longitu-
dinal mechanism which isimportant for braking system is not considered.

A.2 The tyre slip angle

When the tyre is subjected to a transverse force, the surface of the tyre slips on the ground in a
direction opposite to the considered effort. The deformation of the contact area creates an angle
between the longitudinal axis of the wheel and the direction of the wheel movement. This angle
is called the slip angle of the tyre (β). Figure A.1 illustrates this phenomenon.

~Fy

~y

~x

β

~Vx

~V

~Vy

Figure A.1: Presentation of the slip angle
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In response to these deformations, the tyre develops a lateral force Fy, function of the slip
angle β. This slip angle is defined by:

β = atan

(
Vy

Vx

)
(A.1)

A.3 Available model in the literature

The description of the tyre behaviour can be expressed with simple expressions or more advanced
ones, depending on the possibility to determine or to measure the parameters involved or the
level of complexity and accuracy required for the purpose. Thus, numerous tyre models have
been proposed in the literature (Brush model [Gim, 1988], Fiala model [Fiala, 1954], Sakai model
[Sakai, 1969], Pacejka model [Pacejka, 2006],...).

Here, attention is focused on tyre models that are used in this manuscript, that means the
linear tyre model, the piecewise linear tyre model and the Pacejka tyre model.

A.3.1 Linear tyre model

The formulation of the Fy contribution based on the linear tyre model is:

Fy = CS × β (A.2)

with CS the cornering stiffness. This model is very simple but it is limited to a maximum slip
angle of approximately 8◦ (depending on the tyre). However, this model is frequently used for
control purposes. Figure A.2 presents this model.

-5 5 slip angle β (◦)-10 10

Fy (N)

Figure A.2: Presentation of the linear tyre model
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A.3.2 Piecewise linear tyre model

The formulation of the Fy contribution based on the piecewise linear tyre model is:

Fy =





−a2β − b2 if β < −β2

−Fy max if − β2 < β < −β1

a1β if − β1 < β < β1

Fy max if β1 < β < β2

a2β + b2 if β > β2

(A.3)

with a1, a2, b1, b2 and Fy max constant parameters and β1 and β2 defined in Figure A.3.

-5 5 slip angle β (◦)-10 10

Fy (N)

Fy max

β1β1 β2

−β1−β2

Figure A.3: Presentation of the piecewise linear tyre model

A.3.3 Pacejka tyre model

The formulation of the Fy contribution based on the Pacejka model needs 15 parameters and
has the following form:

Fy = DFy sin

[
CFy arctan

(
BFy

(
(1−EFy)(β + SHFy)

+
EFy

BFy

arctan(BFy(β + SHFy))
))

]
+ SVFy

(A.4)
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such that:
DFy = b1F

2
z + b2Fz

BCD0Fy
= b3 sin(2 arctan(Fz/b4))

BCDFy = BCD0Fy
(1− b5 |γ|)

CFy = b0

EFy = b6FZ + b7

SH0Fy
= b9Fz + b10

SHFy = SH0Fy
+ b8γ

SV0Fy
= b12Fz + b13

SVFy = SV0Fy
+ (b112F

2
z + b111Fz)γ

(A.5)

In this formula ,β is the slip angle of the tyre, γ is the camber angle [Lamy and Basset, 2008]
(angle between the vertical axis ~z and the axis of the wheel) which is null and Fz the load on
the tyre. This model is presented in Figure A.4.

-5 5 slip angle β (◦)-10 10

Fy (N)

Figure A.4: Presentation of the Pacejka tyre model
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Appendix B

Stability proof of the adaptive control
algorithms

This appendix aims at presenting the proofs of the theorems that permit to show the stability
of fuzzy adaptive control solution.

B.1 State feedback indirect fuzzy adaptive control

This is the proof of the theorem 1 of Section 2.3.2.1.

Proof The r-derivative of the output error can be written as:

e
(r)
0 = y(r)

m − y(r)

= y(r)
m − a(x)−B(uce + usi)

= −a(x) + â(x, θa)− ηes − es −Busi (B.1)

The tracking error equation becomes:

ės + ηes = −Busi − a(x) + â(x, θa)

= −Busi + (φT
a ςa − δa(x)) (B.2)

Considering the Lyapunov function candidate:

V =
1
2
e2
s +

1
2
θ̃T
a Qaθ̃a (B.3)

where Qa ∈ <d×d (d = dim(φa)) is a positive definite matrix. Differentiating V (t) with respect
to time leads to:

V̇ = −ηe2
s −Busies + (â(x, θa)− a(x))es + θ̃T

a Qa
˙̃
θa (B.4)

Considering equations (2.29) and (2.30), the derivative of the parameter error vector becomes:

˙̃
θa = θ̇a (B.5)

Consequently V̇ becomes:

V̇ = −ηe2
s −Busies + (â(x)− a(x))es − θ̃T

a ςaes (B.6)
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Equations (2.27) and (2.29) enable the following simplification:

V̇ = −ηe2
s −Busies + (θ̃T

a ςa − δa(x))es − θ̃T
a ςaes (B.7)

Now the assumption A1 and the definition of usi (equation 2.31) allow to write:

V̇ = −ηe2
s − δasign(es)es − δa(x)es

≤ −ηe2
s − δasign(es)es + |δa(x)| |es|

≤ −ηe2
s ≤ 0 (B.8)

This means that V ∈ L∞. If V ∈ L∞ then es ∈ L∞ and θ̃a ∈ L∞ by the definition of V .
If Gi(s) is defined by:

Gi(s) =
si

L(s)
(B.9)

for i = 0, . . . , r − 1, it can be shown that Gi(s) is stable because L(s) has its r − 1 roots in the
open left half plane. Thus, the error becomes:

e
(i)
0 = Gi(s)es (B.10)

with es ∈ L∞.
Then, error e

(i)
0 is bounded for i = 0, . . . , r − 1 and e

(k)
0 = y

(k)
m − y(k), so the conclusion is that

y(t), . . . , y(r−1)(t) are bounded.
As proven above, θ̃a is bounded so the “certainty equivalence” control term is bounded.

Moreover, the “sliding mode” control term is bounded. The conclusion is that u is bounded.
If equation (B.8) is used:

∞∫

0

ηe2
sdt ≤ −

∞∫

0

V̇ dt = V (0)− V (∞) < ∞ (B.11)

then es ∈ L2. Moreover previous considerations show that â(x), θ̃a, δa(x, θa) and ςa(x) are
bounded. From (B.2) and the fact that es and usi are bounded, it is obvious that ės is bounded.
Thus, by Barbalat’s Lemma, the tracking error es will converge to zero and e0 will converge to
zero.

B.2 State feedback direct fuzzy adaptive control

This is the proof of the theorem 2 of Section 2.3.2.2.

Proof The rth derivative of the output error is:

ė
(r)
0 = y(r)

m − y(r) = y(r)
m − (a(x) + Bu)

= y(r)
m − v −B(u− u∗) = −es − ηes −B(û + usd − u∗)

= −es − ηes −Bθ̃T
u ςu + Bδu −Busd (B.12)

With es = ės − e
(r)
0 the previous equation leads:

ės + ηes = −Bθ̃T
u ςu + Bδu −Busd (B.13)
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Considering the Lyapunov candidate function:

V =
1

2B
e2
s +

1
2
θ̃T
u Quθ̃u (B.14)

where Qu ∈ <d×d (d = dim(φu)) is a positive definite matrix. Take the derivative of V with
respect to time and notice that ˙̃

θu = θ̇u implies:

V̇ =
1
B

esės + θ̃T
u Quθ̇u

=
es

B
(−ηes −Bθ̃T

u ςu + Bδu −Busd) + θ̃T
u Quθ̇u

= −ηe2
s

B
− esusd + esδu + θ̃T

u (Quθ̇u − ςues) (B.15)

The use of equation (2.38) enables to show that:

V̇ = −ηe2
s

B
− esusd + esδu (B.16)

The definition of the sliding control term in equation (2.39) enables to write:

V̇ ≤ −ηe2
s

B
≤ 0 (B.17)

Since V is a quadratic function and V̇ ≤ 0, the control system is proved to be stable. It is clear
that V ∈ L∞, which implies es ∈ L∞ and θ̃u ∈ L∞. With es and us bounded, the equation
(B.13 ) gives ės ∈ L∞.
If Gi(s) is defined by:

Gi(s) =
si

L(s)
(B.18)

for i = 0, . . . , r − 1, it can be shown that Gi(s) is stable because L(s) has its r − 1 roots in the
open left half plane. Thus, the error becomes:

e
(i)
0 = Gi(s)es (B.19)

Then, error e
(i)
0 is bounded for i = 0, . . . , r − 1 and e

(k)
0 = y

(k)
m − y(k), so the conclusion is that

y(t), . . . , y(r−1)(t) are bounded.
From equation (B.16), the following is obtained:

∞∫

0

ηe2
sdt ≤ −

∞∫

0

V̇ dt = V (0)− V (∞) < ∞ (B.20)

which implies that es ∈ L2. Thus, by Barbalat’s Lemma, the tracking error es and e0 will
converge to zero.
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Appendix C

Solutions to reduce model complexity

C.1 Importance of Model Order Reduction (MOR)

Modelling of complex systems results in most cases in the achievement of complex models that
are often used with difficulties in real problems. Then, the approximation of high order systems
or high order controllers by models with lower orders is required. An approximation procedure,
based on physical considerations or mathematical tools, permits to achieve simpler models. De-
spite the use of more and more efficient calculation tools, the reduction of the model orders is
required and [Fortuna et al., 1992] introduce the main reasons:

• simplify the understanding of a system;

• reduce computation efforts in simulation problems;

• obtain simpler control laws;

• decrease computational effort for the design of controller.

A complex system may be described by a detailed model that considers almost all dynamics
and a lot of state variables. This accurate description may render the comprehension of the
system impossible. A simplified low order model gives the possibility to focus on the main
contributions of the system, that means the most influential dynamics and then facilitates the
understanding of its behaviour. This consideration is easily illustrated when a vehicle model
is studied. In the literature [Gillespie, 1992], [Gissinger and Le-Fort-Piat., 2002], very accurate
descriptions of the vehicle considering for instance the influence of the yaw rate, the pitch rate,
the damper or the aerodynamics effects, exist. These models, based on a fine description of
the different dynamics, are required for the expert, but the basic understanding of the vehicle
dynamic can rely on a simpler description. For example, a low-order model gives the possibility
to clearly understand the relation between the longitudinal speed, the steering angle and the
resultant lateral acceleration. Then, it is obvious that the simulation of a very detailed model
is time consuming. In this case, model reduction helps to decrease the time simulation. For
instance, the mechanical modelling often removes the high frequency vibration modes and only
keeps the low frequency dynamics. This gives the possibility to increase the sample time of
the simulation and then a significant simulation time reduction can be observed. Moreover, the
order of the controllers needs to be reduced to permit their real-time implementation. In this
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case, a compromise must be done between the required reduction and the performance that
must be reached. The obtaining of a high order controller is particularly observed when the
controller synthesis is done using the robust H∞ theory. Then, the technique of controller order
reduction is commonly used. Similarly, the design of controllers based on synthesis models may
be restrictive when the order of the synthesis model is too important. In this case, the synthesis
of the controller is based on an optimization algorithm and the high order of the initial model
may result in an infeasible problem. Then, the reduction of the synthesis model order helps
to simplify the optimization problem which results to the feasibility of the control synthesis
optimization problem.

Model reduction can be done by several methods. Considering a high order time-invariant
model M, the reduction problem aims at finding an approximation Mr of M such that
‖M −Mr‖∞ is small enough. Here, the balanced realisation-based model order reduction is
presented. This method is well-suited because it enables to preserve the majority of the model
characteristics. For a complete description of model order reduction techniques, the reader can
refer to [Obinata and Anderson, 2001].

C.2 Balanced realisation-based model order reduction

C.2.1 Balanced realisation

A balanced realization is an asymptotically stable and minimal realization in which the observ-
ability and controllability gramians are equal and diagonal. The commonly used definition of
the balanced realization is:

Definition 25 Balanced realization
Considering a realization Abal, Bbal, Cbal, Dbal, the realization is a balanced realization if and

only if Abal is asymptotically stable and the observability and controllability gramians verify:

Wc = Wo = Σ = diag(σH
1 , σH

2 , ..., σH
n ) (C.1)

such that the σH
i are the Hankel singular values and σH

1 ≥ σH
2 ≥ ... ≥ σH

n ≥ 0.

The procedure that helps to obtain a balanced realization contains four steps (based on the
Moore and Laub algorithm [Laub, 1980]):

• the gramians Wc and Wo for any stable and minimal realization (A, B, C, D) of the system
are computed,

• the Cholesky factor R of Wc (which is the unique triangular inferior matrix such that
Wc = RRT ) is calculated,

• the positive definite matrix Wo is diagonalized such that RT WoR = UΣ2UT with UT U = I.

• the transformation that helps to obtain the balanced realization is obtained: T = RUΣ−1/2

198



C.2. Balanced realisation-based model order reduction

Finally, using the transformation, the balanced realization is described by:




Abal = T−1AT

Bbal = T−1B

Cbal = CT

Dbal = D

(C.2)

C.2.2 Truncation operation

Considering a system S, modelled by a model M of order n and described by the matrices (A,
B, C, D):

M :

{
ẋ(t) = A x(t) + B u(t),
y(t) = C x(t) + D u(t),

(C.3)

The state x(t) can be divided into two components, one will be the retained component x1(t)
and the other will be the erased component such that

x(t) =

[
x1(t)
x2(t)

]
(C.4)

Then, the matrices A, B and C are separated in different blocks such that:

A =

[
A11 A12

A21 A22

]
(C.5)

B =

[
B1

B2

]
(C.6)

C =
[

C1 C2

]
(C.7)

Finally, the states and dynamics associated to the component x2(t) are erased and the lower
order system using the truncation operator Tr(A,B, C,D) = (A11, B1, C1, D) is obtained:

Mr :

{
ẋr(t) = A11 x(t) + B1 u(t),
yr(t) = C1 x(t) + D u(t),

(C.8)

C.2.3 Balanced truncation

The method of balanced truncation [Moore, 1981] [Pernebo and Silverman, 1982] removes the
states of a balanced realization which correspond to the singular values below a certain threshold.
Model reduction by balanced truncation simply applies the truncation operation to a balanced
realization Abal, Bbal, Cbal, Dbal of a model.

This Section presents the MOR method based on the truncation operation. Some other
methods give the possibility to reduce the order of the model based on the balanced realization.
For example, the singular perturbation method helps to reduce the order of the model. This last
method has the advantage to propose a good approximate model for the low frequencies while
the truncation method tends to produce a better approximation for the high frequencies.
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C.2.4 Properties of the balanced truncation method

The two main properties of the model reduction based on the balanced truncation method are
the stability of the reduced model and the existence of an upper bound of the model reduction
error. These properties are summarized in the following theorem:

Theorem 4 Let σH
1 ≥ σH

2 ≥ ... ≥ σH
n ≥ 0 be the ordered set of different Hankel singular

values of a stable LTI system M. Let Mr be the reduced model obtained by removing the states
corresponding to singular numbers not larger than σk from a balanced realization of M. Then
Mr is stable, and satisfies:

‖M−Mr‖∞ ≤ 2
n∑

i=k

σH
i (C.9)
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